These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. THUMPD1 bi-allelic variants cause loss of tRNA acetylation and a syndromic neurodevelopmental disorder. Broly M; Polevoda BV; Awayda KM; Tong N; Lentini J; Besnard T; Deb W; O'Rourke D; Baptista J; Ellard S; Almannai M; Hashem M; Abdulwahab F; Shamseldin H; Al-Tala S; Alkuraya FS; Leon A; van Loon RLE; Ferlini A; Sanchini M; Bigoni S; Ciorba A; van Bokhoven H; Iqbal Z; Al-Maawali A; Al-Murshedi F; Ganesh A; Al-Mamari W; Lim SC; Pais LS; Brown N; Riazuddin S; Bézieau S; Fu D; Isidor B; Cogné B; O'Connell MR Am J Hum Genet; 2022 Apr; 109(4):587-600. PubMed ID: 35196516 [TBL] [Abstract][Full Text] [Related]
3. The ribosomal P-stalk couples amino acid starvation to GCN2 activation in mammalian cells. Harding HP; Ordonez A; Allen F; Parts L; Inglis AJ; Williams RL; Ron D Elife; 2019 Nov; 8():. PubMed ID: 31749445 [TBL] [Abstract][Full Text] [Related]
4. Yeast Kre33 and human NAT10 are conserved 18S rRNA cytosine acetyltransferases that modify tRNAs assisted by the adaptor Tan1/THUMPD1. Sharma S; Langhendries JL; Watzinger P; Kötter P; Entian KD; Lafontaine DL Nucleic Acids Res; 2015 Feb; 43(4):2242-58. PubMed ID: 25653167 [TBL] [Abstract][Full Text] [Related]
5. Differential requirements for P stalk components in activating yeast protein kinase Gcn2 by stalled ribosomes during stress. Gupta R; Hinnebusch AG Proc Natl Acad Sci U S A; 2023 Apr; 120(16):e2300521120. PubMed ID: 37043534 [TBL] [Abstract][Full Text] [Related]
6. Emerging role of RNA acetylation modification ac4C in diseases: Current advances and future challenges. Luo J; Cao J; Chen C; Xie H Biochem Pharmacol; 2023 Jul; 213():115628. PubMed ID: 37247745 [TBL] [Abstract][Full Text] [Related]
7. Pan-cancer analysis of N4-acetylcytidine adaptor THUMPD1 as a predictor for prognosis and immunotherapy. Li K; Liu J; Yang X; Tu Z; Huang K; Zhu X Biosci Rep; 2021 Dec; 41(12):. PubMed ID: 34762107 [TBL] [Abstract][Full Text] [Related]
8. Activation of GCN2 kinase by ribosome stalling links translation elongation with translation initiation. Ishimura R; Nagy G; Dotu I; Chuang JH; Ackerman SL Elife; 2016 Apr; 5():. PubMed ID: 27085088 [TBL] [Abstract][Full Text] [Related]
9. Review: Emerging roles of the signaling network of the protein kinase GCN2 in the plant stress response. Lokdarshi A; von Arnim AG Plant Sci; 2022 Jul; 320():111280. PubMed ID: 35643606 [TBL] [Abstract][Full Text] [Related]
10. Activity reconstitution of Kre33 and Tan1 reveals a molecular ruler mechanism in eukaryotic tRNA acetylation. Ma CR; Liu N; Li H; Xu H; Zhou XL Nucleic Acids Res; 2024 May; 52(9):5226-5240. PubMed ID: 38613394 [TBL] [Abstract][Full Text] [Related]
11. Cytosolic THUMPD1 promotes breast cancer cells invasion and metastasis via the AKT-GSK3-Snail pathway. Zhang X; Jiang G; Sun M; Zhou H; Miao Y; Liang M; Wang E; Zhang Y Oncotarget; 2017 Feb; 8(8):13357-13366. PubMed ID: 28076326 [TBL] [Abstract][Full Text] [Related]
12. Interaction between the tRNA-binding and C-terminal domains of Yeast Gcn2 regulates kinase activity in vivo. Lageix S; Zhang J; Rothenburg S; Hinnebusch AG PLoS Genet; 2015 Feb; 11(2):e1004991. PubMed ID: 25695491 [TBL] [Abstract][Full Text] [Related]
13. Selective control of amino acid metabolism by the GCN2 eIF2 kinase pathway in Saccharomyces cerevisiae. Zaborske JM; Wu X; Wek RC; Pan T BMC Biochem; 2010 Aug; 11():29. PubMed ID: 20684782 [TBL] [Abstract][Full Text] [Related]
14. Towards a model of GCN2 activation. Masson GR Biochem Soc Trans; 2019 Oct; 47(5):1481-1488. PubMed ID: 31647517 [TBL] [Abstract][Full Text] [Related]
15. Lactylation of NAT10 promotes N Yan Q; Zhou J; Gu Y; Huang W; Ruan M; Zhang H; Wang T; Wei P; Chen G; Li W; Lu C Cell Death Differ; 2024 Oct; 31(10):1362-1374. PubMed ID: 38879723 [TBL] [Abstract][Full Text] [Related]
17. Mitochondrial ROS-mediated ribosome stalling and GCN2 activation are partially involved in 1-nitropyrene-induced steroidogenic inhibition in testes. Li J; Gao L; Chen J; Zhang WW; Zhang XY; Wang B; Zhang C; Wang Y; Huang YC; Wang H; Wei W; Xu DX Environ Int; 2022 Sep; 167():107393. PubMed ID: 35843074 [TBL] [Abstract][Full Text] [Related]
18. Aberrant translation regulated by METTL1/WDR4-mediated tRNA N7-methylguanosine modification drives head and neck squamous cell carcinoma progression. Chen J; Li K; Chen J; Wang X; Ling R; Cheng M; Chen Z; Chen F; He Q; Li S; Zhang C; Jiang Y; Chen Q; Wang A; Chen D Cancer Commun (Lond); 2022 Mar; 42(3):223-244. PubMed ID: 35179319 [TBL] [Abstract][Full Text] [Related]
19. Transfer-RNA-mediated enhancement of ribosomal proteins S6 kinases signaling for cell proliferation. Kwon NH; Lee MR; Kong J; Park SK; Hwang BJ; Kim BG; Lee ES; Moon HG; Kim S RNA Biol; 2018; 15(4-5):635-648. PubMed ID: 28816616 [TBL] [Abstract][Full Text] [Related]
20. Cytidine Acetylation Across the Tree of Life. Thalalla Gamage S; Howpay Manage SA; Chu TT; Meier JL Acc Chem Res; 2024 Feb; 57(3):338-348. PubMed ID: 38226431 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]