These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 39091936)

  • 1. Re-using an oleic by-product in the manufacturing of fired clay bricks.
    Fakih Lanjri H; Bougrine O; Fath Allah R; Ammari M; Ben Allal L
    Heliyon; 2024 Jul; 10(13):e34052. PubMed ID: 39091936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of olive mill waste addition on the properties of porous fired clay bricks using Taguchi method.
    Sutcu M; Ozturk S; Yalamac E; Gencel O
    J Environ Manage; 2016 Oct; 181():185-192. PubMed ID: 27343435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A practical proposal for solving the world's cigarette butt problem: Recycling in fired clay bricks.
    Mohajerani A; Kadir AA; Larobina L
    Waste Manag; 2016 Jun; 52():228-44. PubMed ID: 26975623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manufacturing of Sustainable Untreated Coal Ash Masonry Units for Structural Applications.
    Abbass W; Abbas S; Aslam F; Ahmed A; Ahmed T; Hashir A; Mamdouh A
    Materials (Basel); 2022 Jun; 15(11):. PubMed ID: 35683300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sustainable Use of Marble Waste in Industrial Production of Fired Clay Bricks and Its Employment for Treatment of Flue Gases.
    Ahmad S; Hassan Shah MU; Ullah A; Shah SN; Rehan MS; Khan IA; Ahmad MI
    ACS Omega; 2021 Sep; 6(35):22559-22569. PubMed ID: 34514228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of bottom ash from olive pomace combustion in the production of eco-friendly fired clay bricks.
    Eliche-Quesada D; Leite-Costa J
    Waste Manag; 2016 Feb; 48():323-333. PubMed ID: 26653359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recycling of Cigarette Butts in Fired Clay Bricks: A New Laboratory Investigation.
    Kurmus H; Mohajerani A
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32050481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manufacture of Sustainable Clay Bricks Using Waste from Secondary Aluminum Recycling as Raw Material.
    Bonet-Martínez E; Pérez-Villarejo L; Eliche-Quesada D; Castro E
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30513855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reuse of walnut shell waste in the development of fired ceramic bricks.
    Barnabas AA; Balogun OA; Akinwande AA; Ogbodo JF; Ademati AO; Dongo EI; Romanovski V
    Environ Sci Pollut Res Int; 2023 Jan; 30(5):11823-11837. PubMed ID: 36098915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of Limestone Waste Addition for Fired Clay Bricks.
    Thalmaier G; Cobȋrzan N; Balog AA; Constantinescu H; Ceclan A; Voinea M; Marinca TF
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery of mining and agri-food wastes in fired materials: a case study of the Moroccan industry.
    Harrami M; Ez-Zaki H; Fami NE; Khachani N; Diouri A
    Environ Sci Pollut Res Int; 2024 Oct; ():. PubMed ID: 39392578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Utilization of Savannah Harbor river sediment as the primary raw material in production of fired brick.
    Mezencevova A; Yeboah NN; Burns SE; Kahn LF; Kurtis KE
    J Environ Manage; 2012 Dec; 113():128-36. PubMed ID: 23017584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of Construction Material Using Wastewater: An Application of Circular Economy for Mass Production of Bricks.
    Ghafoor S; Hameed A; Shah SAR; Azab M; Faheem H; Nawaz MF; Iqbal F
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of recycled glass substitution on the physical and mechanical properties of clay bricks.
    Loryuenyong V; Panyachai T; Kaewsimork K; Siritai C
    Waste Manag; 2009 Oct; 29(10):2717-21. PubMed ID: 19545990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The reuse of waste glass for enhancement of heavy metals immobilization during the introduction of galvanized sludge in brick manufacturing.
    Mao L; Wu Y; Zhang W; Huang Q
    J Environ Manage; 2019 Feb; 231():780-787. PubMed ID: 30415171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eco-Friendly Fired Brick Produced from Industrial Ash and Natural Clay: A Study of Waste Reuse.
    Doğan-Sağlamtimur N; Bilgil A; Szechyńska-Hebda M; Parzych S; Hebda M
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33673275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Durability Assessment and Microstructure of High-Strength Performance Bricks Produced from PET Waste and Foundry Sand.
    Aneke FI; Awuzie BO; Mostafa MMH; Okorafor C
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective sludge management: Reuse of biowaste and sewer sediments for fired bricks.
    Nguyen HN; Dang HTT; Pham LTN; Nguyen HX; Tong KT; Pham TT; Nguyen KM; Tran HTM
    J Air Waste Manag Assoc; 2024 Jul; 74(7):478-489. PubMed ID: 38916528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Volcanic Tuff as Secondary Raw Material in the Production of Clay Bricks.
    Cobîrzan N; Thalmaier G; Balog AA; Constantinescu H; Ceclan A; Nasui M
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Experimental and Empirical Study on the Use of Waste Marble Powder in Construction Material.
    Sufian M; Ullah S; Ostrowski KA; Ahmad A; Zia A; Śliwa-Wieczorek K; Siddiq M; Awan AA
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.