These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 39092079)

  • 1. General hydrodynamic features of elastoviscoplastic fluid flows through randomised porous media.
    Parvar S; Chaparian E; Tammisola O
    Theor Comput Fluid Dyn; 2024; 38(4):531-544. PubMed ID: 39092079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Yield-stress fluids in porous media: a comparison of viscoplastic and elastoviscoplastic flows.
    Chaparian E; Izbassarov D; De Vita F; Brandt L; Tammisola O
    Meccanica; 2020; 55(2):331-342. PubMed ID: 32116390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-Bubble Rising in Shear-Thinning and Elastoviscoplastic Fluids Using a Geometric Volume of Fluid Algorithm.
    Fakhari A; Fernandes C
    Polymers (Basel); 2023 Aug; 15(16):. PubMed ID: 37631494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical investigation of viscoplastic fluids on natural convection in open cavities with solid obstacles.
    Santos PRM; Franco AT; Junqueira SLM
    Heliyon; 2024 Feb; 10(4):e26243. PubMed ID: 38420386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective Rheology of Two-Phase Flow in Three-Dimensional Porous Media: Experiment and Simulation.
    Sinha S; Bender AT; Danczyk M; Keepseagle K; Prather CA; Bray JM; Thrane LW; Seymour JD; Codd SL; Hansen A
    Transp Porous Media; 2017; 119(1):77-94. PubMed ID: 28794576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From yield stress to elastic instabilities: Tuning the extensional behavior of elastoviscoplastic fluids.
    Abdelgawad MS; Haward SJ; Shen AQ; Rosti ME
    PNAS Nexus; 2024 Jun; 3(6):pgae227. PubMed ID: 38911595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the determination of a generalized Darcy equation for yield-stress fluid in porous media using a Lattice-Boltzmann TRT scheme.
    Talon L; Bauer D
    Eur Phys J E Soft Matter; 2013 Dec; 36(12):139. PubMed ID: 24326905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transition between solid and liquid state of yield-stress fluids under purely extensional deformations.
    Varchanis S; Haward SJ; Hopkins CC; Syrakos A; Shen AQ; Dimakopoulos Y; Tsamopoulos J
    Proc Natl Acad Sci U S A; 2020 Jun; 117(23):12611-12617. PubMed ID: 32434919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of elastoviscoplastic filament stretching.
    Moschopoulos P; Kouni E; Psaraki K; Dimakopoulos Y; Tsamopoulos J
    Soft Matter; 2023 Jun; 19(25):4717-4736. PubMed ID: 37314392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Yielding the yield-stress analysis: a study focused on the effects of elasticity on the settling of a single spherical particle in simple yield-stress fluids.
    Fraggedakis D; Dimakopoulos Y; Tsamopoulos J
    Soft Matter; 2016 Jun; 12(24):5378-401. PubMed ID: 27223648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational Analysis of Fluid Forces on an Obstacle in a Channel Driven Cavity: Viscoplastic Material Based Characteristics.
    Mahmood R; Hussain Majeed A; Ain QU; Awrejcewicz J; Siddique I; Shahzad H
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalization of Darcy's law for Bingham fluids in porous media: from flow-field statistics to the flow-rate regimes.
    Chevalier T; Talon L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023011. PubMed ID: 25768601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wall Effects for Spheroidal Particle in Confined Bingham Plastic Fluids.
    Dang J; Duan X; Tian S
    ACS Omega; 2022 Nov; 7(43):38717-38727. PubMed ID: 36340085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative predictions of turbulent non-isothermal flow of a viscoplastic fluid with yield stress.
    Pakhomov MA; Zhapbasbayev UK
    Heliyon; 2024 Jan; 10(2):e24062. PubMed ID: 38293371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Breakage of non-Newtonian character in flow through a porous medium: evidence from numerical simulation.
    Bleyer J; Coussot P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063018. PubMed ID: 25019890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purely-elastic flow instabilities and elastic turbulence in microfluidic cross-slot devices.
    Sousa PC; Pinho FT; Alves MA
    Soft Matter; 2018 Feb; 14(8):1344-1354. PubMed ID: 29376533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pore-Scale Flow Characterization of Polymer Solutions in Microfluidic Porous Media.
    Browne CA; Shih A; Datta SS
    Small; 2020 Mar; 16(9):e1903944. PubMed ID: 31602809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extra dissipation and flow uniformization due to elastic instabilities of shear-thinning polymer solutions in model porous media.
    Machado A; Bodiguel H; Beaumont J; Clisson G; Colin A
    Biomicrofluidics; 2016 Jul; 10(4):043507. PubMed ID: 27478522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic Rheometry and Particle Settling: Characterizing the Effect of Polymer Solution Elasticity.
    Faroughi SA; Del Giudice F
    Polymers (Basel); 2022 Feb; 14(4):. PubMed ID: 35215569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viscoplastic Couette Flow in the Presence of Wall Slip with Non-Zero Slip Yield Stress.
    Damianou Y; Panaseti P; Georgiou GC
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31683545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.