These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 39092550)
1. Identification of High Linoleic Acid Varieties in Tetraploid perilla through Gamma-ray Irradiation and CRISPR/Cas9. Park ME; Choi HA; Lee KR; Heo JB; Kim HU Plant Cell Physiol; 2024 Oct; 65(9):1461-1473. PubMed ID: 39092550 [TBL] [Abstract][Full Text] [Related]
2. RNA Sequencing and Coexpression Analysis Reveal Key Genes Involved in α-Linolenic Acid Biosynthesis in Perilla frutescens Seed. Zhang T; Song C; Song L; Shang Z; Yang S; Zhang D; Sun W; Shen Q; Zhao D Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29144390 [No Abstract] [Full Text] [Related]
3. Functional identification of oleate 12-desaturase and ω-3 fatty acid desaturase genes from Perilla frutescens var. frutescens. Lee KR; Lee Y; Kim EH; Lee SB; Roh KH; Kim JB; Kang HC; Kim HU Plant Cell Rep; 2016 Dec; 35(12):2523-2537. PubMed ID: 27637203 [TBL] [Abstract][Full Text] [Related]
4. High accumulation of γ-linolenic acid and Stearidonic acid in transgenic Perilla (Perilla frutescens var. frutescens) seeds. Lee KR; Kim KH; Kim JB; Hong SB; Jeon I; Kim HU; Lee MH; Kim JK BMC Plant Biol; 2019 Apr; 19(1):120. PubMed ID: 30935415 [TBL] [Abstract][Full Text] [Related]
5. Transcriptome analysis and identification of genes associated with ω-3 fatty acid biosynthesis in Perilla frutescens (L.) var. frutescens. Kim HU; Lee KR; Shim D; Lee JH; Chen GQ; Hwang S BMC Genomics; 2016 Jun; 17():474. PubMed ID: 27342315 [TBL] [Abstract][Full Text] [Related]
6. Modifications of fatty acid profile through targeted mutation at BnaFAD2 gene with CRISPR/Cas9-mediated gene editing in Brassica napus. Huang H; Cui T; Zhang L; Yang Q; Yang Y; Xie K; Fan C; Zhou Y Theor Appl Genet; 2020 Aug; 133(8):2401-2411. PubMed ID: 32448919 [TBL] [Abstract][Full Text] [Related]
7. Genetic variation of seed oil characteristics in native Korean germplasm of Perilla crop (Perilla frutescens L.) using SSR markers. Park H; Sa KJ; Lee S; Lee JK Genes Genomics; 2022 Oct; 44(10):1159-1170. PubMed ID: 35900697 [TBL] [Abstract][Full Text] [Related]
8. Genome-wide comprehensive characterization and transcriptomic analysis of AP2/ERF gene family revealed its role in seed oil and ALA formation in perilla (Perilla frutescens). Wu D; Zhang K; Li CY; Xie GW; Lu MT; Qian Y; Shu YP; Shen Q Gene; 2023 Dec; 889():147808. PubMed ID: 37722611 [TBL] [Abstract][Full Text] [Related]
9. Engineering the Staple Oil Crop Xue YF; Fu C; Chai CY; Liao FF; Chen BJ; Wei SZ; Wang R; Gao H; Fan TT; Chai YR J Agric Food Chem; 2023 May; 71(19):7324-7333. PubMed ID: 37130169 [TBL] [Abstract][Full Text] [Related]
10. Mutagenesis of FAD2 genes in peanut with CRISPR/Cas9 based gene editing. Yuan M; Zhu J; Gong L; He L; Lee C; Han S; Chen C; He G BMC Biotechnol; 2019 Apr; 19(1):24. PubMed ID: 31035982 [TBL] [Abstract][Full Text] [Related]
11. Omega-3 fatty acid desaturase gene family from two ω-3 sources, Salvia hispanica and Perilla frutescens: Cloning, characterization and expression. Xue Y; Chen B; Win AN; Fu C; Lian J; Liu X; Wang R; Zhang X; Chai Y PLoS One; 2018; 13(1):e0191432. PubMed ID: 29351555 [TBL] [Abstract][Full Text] [Related]
12. Transcriptomic analysis of Perilla frutescens seed to insight into the biosynthesis and metabolic of unsaturated fatty acids. Liao B; Hao Y; Lu J; Bai H; Guan L; Zhang T BMC Genomics; 2018 Mar; 19(1):213. PubMed ID: 29562889 [TBL] [Abstract][Full Text] [Related]
13. Design of high-oleic tobacco (Nicotiana tabacum L.) seed oil by CRISPR-Cas9-mediated knockout of NtFAD2-2. Tian Y; Chen K; Li X; Zheng Y; Chen F BMC Plant Biol; 2020 May; 20(1):233. PubMed ID: 32450806 [TBL] [Abstract][Full Text] [Related]
14. [Cloning and functional characterization of a lysophosphatidic acid acyltransferase gene from Zhou Y; Huang X; Hao Y; Cai G; Shi X; Li R; Wang J Sheng Wu Gong Cheng Xue Bao; 2022 Aug; 38(8):3014-3028. PubMed ID: 36002428 [TBL] [Abstract][Full Text] [Related]
15. Histone acetyltransferase general control non-repressed protein 5 (GCN5) affects the fatty acid composition of Arabidopsis thaliana seeds by acetylating fatty acid desaturase3 (FAD3). Wang T; Xing J; Liu X; Liu Z; Yao Y; Hu Z; Peng H; Xin M; Zhou DX; Zhang Y; Ni Z Plant J; 2016 Dec; 88(5):794-808. PubMed ID: 27500884 [TBL] [Abstract][Full Text] [Related]
16. Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Jiang WZ; Henry IM; Lynagh PG; Comai L; Cahoon EB; Weeks DP Plant Biotechnol J; 2017 May; 15(5):648-657. PubMed ID: 27862889 [TBL] [Abstract][Full Text] [Related]
17. Incipient diploidization of the medicinal plant Perilla within 10,000 years. Zhang Y; Shen Q; Leng L; Zhang D; Chen S; Shi Y; Ning Z; Chen S Nat Commun; 2021 Sep; 12(1):5508. PubMed ID: 34535649 [TBL] [Abstract][Full Text] [Related]
18. Enhancing microRNA167A expression in seed decreases the α-linolenic acid content and increases seed size in Camelina sativa. Na G; Mu X; Grabowski P; Schmutz J; Lu C Plant J; 2019 Apr; 98(2):346-358. PubMed ID: 30604453 [TBL] [Abstract][Full Text] [Related]
19. Integrated analysis of miRNA, transcriptome, and degradome sequencing provides new insights into lipid metabolism in perilla seed. Zou X; Zhang K; Wu D; Lu M; Wang H; Shen Q Gene; 2024 Feb; 895():147953. PubMed ID: 37925118 [TBL] [Abstract][Full Text] [Related]
20. Comparative Transcriptome Analysis Reveals an Efficient Mechanism of α-Linolenic Acid in Tree Peony Seeds. Zhang Q; Yu R; Sun D; Rahman MM; Xie L; Hu J; He L; Kilaru A; Niu L; Zhang Y Int J Mol Sci; 2018 Dec; 20(1):. PubMed ID: 30586917 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]