These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 39092633)
1. Orexin increases the neuronal excitability of several brain areas associated with maintaining of arousal. Chen XY; Yang W; Xue Y; Xie AM; Sun XR; Chen L J Neurochem; 2024 Sep; 168(9):2379-2390. PubMed ID: 39092633 [TBL] [Abstract][Full Text] [Related]
2. Lack of hypocretin attenuates behavioral changes produced by glutamatergic activation of the perifornical-lateral hypothalamic area. Kostin A; Siegel JM; Alam MN Sleep; 2014 May; 37(5):1011-20. PubMed ID: 24790280 [TBL] [Abstract][Full Text] [Related]
3. Orexin neuronal circuitry: role in the regulation of sleep and wakefulness. Ohno K; Sakurai T Front Neuroendocrinol; 2008 Jan; 29(1):70-87. PubMed ID: 17910982 [TBL] [Abstract][Full Text] [Related]
4. Structure and Function of Neuronal Circuits Linking Ventrolateral Preoptic Nucleus and Lateral Hypothalamic Area. Prokofeva K; Saito YC; Niwa Y; Mizuno S; Takahashi S; Hirano A; Sakurai T J Neurosci; 2023 May; 43(22):4075-4092. PubMed ID: 37117013 [TBL] [Abstract][Full Text] [Related]
5. Hypothalamic regulation of the sleep/wake cycle. Ono D; Yamanaka A Neurosci Res; 2017 May; 118():74-81. PubMed ID: 28526553 [TBL] [Abstract][Full Text] [Related]
11. Monoamines Inhibit GABAergic Neurons in Ventrolateral Preoptic Area That Make Direct Synaptic Connections to Hypothalamic Arousal Neurons. Saito YC; Maejima T; Nishitani M; Hasegawa E; Yanagawa Y; Mieda M; Sakurai T J Neurosci; 2018 Jul; 38(28):6366-6378. PubMed ID: 29915137 [TBL] [Abstract][Full Text] [Related]
12. The sleep-wake cycle, the hypocretin/orexin system and narcolepsy: advances from preclinical research to treatment. Arias-Carrión O; Bradbury M CNS Neurol Disord Drug Targets; 2009 Aug; 8(4):232-4. PubMed ID: 19689304 [TBL] [Abstract][Full Text] [Related]
13. GABAergic neurons in the preoptic area send direct inhibitory projections to orexin neurons. Saito YC; Tsujino N; Hasegawa E; Akashi K; Abe M; Mieda M; Sakimura K; Sakurai T Front Neural Circuits; 2013; 7():192. PubMed ID: 24348342 [TBL] [Abstract][Full Text] [Related]
14. TAK-925, an orexin 2 receptor-selective agonist, shows robust wake-promoting effects in mice. Yukitake H; Fujimoto T; Ishikawa T; Suzuki A; Shimizu Y; Rikimaru K; Ito M; Suzuki M; Kimura H Pharmacol Biochem Behav; 2019 Dec; 187():172794. PubMed ID: 31654653 [TBL] [Abstract][Full Text] [Related]
15. Delayed orexin signaling consolidates wakefulness and sleep: physiology and modeling. Diniz Behn CG; Kopell N; Brown EN; Mochizuki T; Scammell TE J Neurophysiol; 2008 Jun; 99(6):3090-103. PubMed ID: 18417630 [TBL] [Abstract][Full Text] [Related]
16. Vasopressin neurons in the paraventricular hypothalamus promote wakefulness via lateral hypothalamic orexin neurons. Islam MT; Rumpf F; Tsuno Y; Kodani S; Sakurai T; Matsui A; Maejima T; Mieda M Curr Biol; 2022 Sep; 32(18):3871-3885.e4. PubMed ID: 35907397 [TBL] [Abstract][Full Text] [Related]
17. Roles of orexins in regulation of feeding and wakefulness. Sakurai T Neuroreport; 2002 Jun; 13(8):987-95. PubMed ID: 12060794 [TBL] [Abstract][Full Text] [Related]
18. Regulation of Lateral Hypothalamic Orexin Activity by Local GABAergic Neurons. Ferrari LL; Park D; Zhu L; Palmer MR; Broadhurst RY; Arrigoni E J Neurosci; 2018 Feb; 38(6):1588-1599. PubMed ID: 29311142 [TBL] [Abstract][Full Text] [Related]
19. Progressive Loss of the Orexin Neurons Reveals Dual Effects on Wakefulness. Branch AF; Navidi W; Tabuchi S; Terao A; Yamanaka A; Scammell TE; Diniz Behn C Sleep; 2016 Feb; 39(2):369-77. PubMed ID: 26446125 [TBL] [Abstract][Full Text] [Related]
20. [Hypothalamic neuropeptides implicated in the regulation of sleep/wakefulness states]. Sakurai T Brain Nerve; 2012 Jun; 64(6):629-37. PubMed ID: 22647470 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]