These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Oxidized and phosphorylated synthetic peptides corresponding to the second and third tubulin-binding repeats of the tau protein reveal structural features of paired helical filament assembly. Hoffmann R; Dawson NF; Wade JD; Otvös L J Pept Res; 1997 Aug; 50(2):132-42. PubMed ID: 9273897 [TBL] [Abstract][Full Text] [Related]
3. Phosphorylation of Tau R2 Repeat Destabilizes Its Binding to Microtubules: A Molecular Dynamics Simulation Study. Man VH; He X; Gao J; Wang J ACS Chem Neurosci; 2023 Feb; 14(3):458-467. PubMed ID: 36669127 [TBL] [Abstract][Full Text] [Related]
4. Phosphorylation modulates the local conformation and self-aggregation ability of a peptide from the fourth tau microtubule-binding repeat. Du JT; Yu CH; Zhou LX; Wu WH; Lei P; Li Y; Zhao YF; Nakanishi H; Li YM FEBS J; 2007 Oct; 274(19):5012-20. PubMed ID: 17725643 [TBL] [Abstract][Full Text] [Related]
5. Disease-Associated Tau Phosphorylation Hinders Tubulin Assembly within Tau Condensates. Savastano A; Flores D; Kadavath H; Biernat J; Mandelkow E; Zweckstetter M Angew Chem Int Ed Engl; 2021 Jan; 60(2):726-730. PubMed ID: 33017094 [TBL] [Abstract][Full Text] [Related]
6. It Takes Tau to Tango: Investigating the Fuzzy Interaction between the R2-Repeat Domain and Tubulin C-Terminal Tails. Marien J; Prévost C; Sacquin-Mora S Biochemistry; 2023 Aug; 62(16):2492-2502. PubMed ID: 37499261 [TBL] [Abstract][Full Text] [Related]
7. Regulation and aggregation of intrinsically disordered peptides. Levine ZA; Larini L; LaPointe NE; Feinstein SC; Shea JE Proc Natl Acad Sci U S A; 2015 Mar; 112(9):2758-63. PubMed ID: 25691742 [TBL] [Abstract][Full Text] [Related]
8. First tau repeat domain binding to growing and taxol-stabilized microtubules, and serine 262 residue phosphorylation. Devred F; Douillard S; Briand C; Peyrot V FEBS Lett; 2002 Jul; 523(1-3):247-51. PubMed ID: 12123840 [TBL] [Abstract][Full Text] [Related]
9. Identification of a novel microtubule binding and assembly domain in the developmentally regulated inter-repeat region of tau. Goode BL; Feinstein SC J Cell Biol; 1994 Mar; 124(5):769-82. PubMed ID: 8120098 [TBL] [Abstract][Full Text] [Related]
10. Importance of local structures of second and third repeat fragments of microtubule-binding domain for tau filament formation. Tokimasa M; Minoura K; Hiraoka S; Tomoo K; Sumida M; Taniguchi T; Ishida T FEBS Lett; 2005 Jul; 579(17):3481-6. PubMed ID: 15963990 [TBL] [Abstract][Full Text] [Related]
11. Acetylation and phosphorylation processes modulate Tau's binding to microtubules: A molecular dynamics study. Castro TG; Ferreira T; Matamá T; Munteanu FD; Cavaco-Paulo A Biochim Biophys Acta Gen Subj; 2023 Feb; 1867(2):130276. PubMed ID: 36372288 [TBL] [Abstract][Full Text] [Related]
12. Secondary structures transition of tau protein with intrinsically disordered proteins specific force field. Dan A; Chen HF Chem Biol Drug Des; 2019 Mar; 93(3):242-253. PubMed ID: 30259679 [TBL] [Abstract][Full Text] [Related]
13. Molecular Insights into the Differential Effects of Acetylation on the Aggregation of Tau Microtubule-Binding Repeats. Zou Y; Guan L; Tan J; Qi B; Sun Y; Huang F; Zhang Q J Chem Inf Model; 2024 Apr; 64(8):3386-3399. PubMed ID: 38489841 [TBL] [Abstract][Full Text] [Related]
14. Molecular Dynamics Simulation of Tau Peptides for the Investigation of Conformational Changes Induced by Specific Phosphorylation Patterns. Gandhi NS; Kukic P; Lippens G; Mancera RL Methods Mol Biol; 2017; 1523():33-59. PubMed ID: 27975243 [TBL] [Abstract][Full Text] [Related]
15. Conformational changes specific for pseudophosphorylation at serine 262 selectively impair binding of tau to microtubules. Fischer D; Mukrasch MD; Biernat J; Bibow S; Blackledge M; Griesinger C; Mandelkow E; Zweckstetter M Biochemistry; 2009 Oct; 48(42):10047-55. PubMed ID: 19769346 [TBL] [Abstract][Full Text] [Related]
16. The Effect of Multisite Phosphorylation on the Conformational Properties of Intrinsically Disordered Proteins. Rieloff E; Skepö M Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681718 [TBL] [Abstract][Full Text] [Related]
17. Mercury(II) promotes the in vitro aggregation of tau fragment corresponding to the second repeat of microtubule-binding domain: Coordination and conformational transition. Yang DJ; Shi S; Zheng LF; Yao TM; Ji LN Biopolymers; 2010 Dec; 93(12):1100-7. PubMed ID: 20665688 [TBL] [Abstract][Full Text] [Related]
18. Effect of site-specific amino acid D-isomerization on β-sheet transition and fibril formation profiles of Tau microtubule-binding repeat peptides. Tochio N; Murata T; Utsunomiya-Tate N Biochem Biophys Res Commun; 2019 Jan; 508(1):184-190. PubMed ID: 30471859 [TBL] [Abstract][Full Text] [Related]
19. Domains of tau protein, differential phosphorylation, and dynamic instability of microtubules. Trinczek B; Biernat J; Baumann K; Mandelkow EM; Mandelkow E Mol Biol Cell; 1995 Dec; 6(12):1887-902. PubMed ID: 8590813 [TBL] [Abstract][Full Text] [Related]
20. Molecular dynamics simulation of the phosphorylation-induced conformational changes of a tau peptide fragment. Lyons AJ; Gandhi NS; Mancera RL Proteins; 2014 Sep; 82(9):1907-23. PubMed ID: 24577753 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]