These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 39092904)
21. Functional interactions between the proline-rich and repeat regions of tau enhance microtubule binding and assembly. Goode BL; Denis PE; Panda D; Radeke MJ; Miller HP; Wilson L; Feinstein SC Mol Biol Cell; 1997 Feb; 8(2):353-65. PubMed ID: 9190213 [TBL] [Abstract][Full Text] [Related]
23. Linkage-dependent contribution of repeat peptides to self-aggregation of three- or four-repeat microtubule-binding domains in tau protein. Okuyama K; Nishiura C; Mizushima F; Minoura K; Sumida M; Taniguchi T; Tomoo K; Ishida T FEBS J; 2008 Apr; 275(7):1529-1539. PubMed ID: 18312411 [TBL] [Abstract][Full Text] [Related]
24. Proline-directed phosphorylation of human Tau protein. Vulliet R; Halloran SM; Braun RK; Smith AJ; Lee G J Biol Chem; 1992 Nov; 267(31):22570-4. PubMed ID: 1429606 [TBL] [Abstract][Full Text] [Related]
25. Estramustine-phosphate binds to a tubulin binding domain on microtubule-associated proteins MAP-2 and tau. Moraga D; Rivas-Berrios A; Farías G; Wallin M; Maccioni RB Biochim Biophys Acta; 1992 May; 1121(1-2):97-103. PubMed ID: 1599956 [TBL] [Abstract][Full Text] [Related]
26. Conformation and Affinity Modulations by Multiple Phosphorylation Occurring in the BIN1 SH3 Domain Binding Site of the Tau Protein Proline-Rich Region. Lasorsa A; Bera K; Malki I; Dupré E; Cantrelle FX; Merzougui H; Sinnaeve D; Hanoulle X; Hritz J; Landrieu I Biochemistry; 2023 Jun; 62(11):1631-1642. PubMed ID: 37167199 [TBL] [Abstract][Full Text] [Related]
27. Phosphorylation at Ser289 Enhances the Oligomerization of Tau Repeat R2. Man VH; He X; Han F; Cai L; Wang L; Niu T; Zhai J; Ji B; Gao J; Wang J J Chem Inf Model; 2023 Feb; 63(4):1351-1361. PubMed ID: 36786552 [TBL] [Abstract][Full Text] [Related]
28. C-H ... π interplay between Ile308 and Tyr310 residues in the third repeat of microtubule binding domain is indispensable for self-assembly of three- and four-repeat tau. Sogawa K; Okuda R; In Y; Ishida T; Taniguchi T; Minoura K; Tomoo K J Biochem; 2012 Sep; 152(3):221-9. PubMed ID: 22659094 [TBL] [Abstract][Full Text] [Related]
29. Kinetic stabilization of microtubule dynamics at steady state by tau and microtubule-binding domains of tau. Panda D; Goode BL; Feinstein SC; Wilson L Biochemistry; 1995 Sep; 34(35):11117-27. PubMed ID: 7669769 [TBL] [Abstract][Full Text] [Related]
30. Structural characterization by nuclear magnetic resonance of the impact of phosphorylation in the proline-rich region of the disordered Tau protein. Sibille N; Huvent I; Fauquant C; Verdegem D; Amniai L; Leroy A; Wieruszeski JM; Lippens G; Landrieu I Proteins; 2012 Feb; 80(2):454-62. PubMed ID: 22072628 [TBL] [Abstract][Full Text] [Related]
31. Repeat motifs of tau bind to the insides of microtubules in the absence of taxol. Kar S; Fan J; Smith MJ; Goedert M; Amos LA EMBO J; 2003 Jan; 22(1):70-7. PubMed ID: 12505985 [TBL] [Abstract][Full Text] [Related]
32. Partial mimicry of the microtubule binding of tau by its membrane binding. MacAinsh M; Zhou HX Protein Sci; 2023 Mar; 32(3):e4581. PubMed ID: 36710643 [TBL] [Abstract][Full Text] [Related]
33. Tau mutants bind tubulin heterodimers with enhanced affinity. Elbaum-Garfinkle S; Cobb G; Compton JT; Li XH; Rhoades E Proc Natl Acad Sci U S A; 2014 Apr; 111(17):6311-6. PubMed ID: 24733915 [TBL] [Abstract][Full Text] [Related]
34. The self-assembly ability of the first microtubule-binding repeat from tau and its modulation by phosphorylation. Zhou LX; Zeng ZY; Du JT; Zhao YF; Li YM Biochem Biophys Res Commun; 2006 Sep; 348(2):637-42. PubMed ID: 16889747 [TBL] [Abstract][Full Text] [Related]
35. Positional effects of phosphorylation on the stability and morphology of tau-related amyloid fibrils. Inoue M; Konno T; Tainaka K; Nakata E; Yoshida HO; Morii T Biochemistry; 2012 Feb; 51(7):1396-406. PubMed ID: 22304362 [TBL] [Abstract][Full Text] [Related]
36. Structural and functional differences between 3-repeat and 4-repeat tau isoforms. Implications for normal tau function and the onset of neurodegenetative disease. Goode BL; Chau M; Denis PE; Feinstein SC J Biol Chem; 2000 Dec; 275(49):38182-9. PubMed ID: 10984497 [TBL] [Abstract][Full Text] [Related]
37. Phosphorylation of the overlooked tyrosine 310 regulates the structure, aggregation, and microtubule- and lipid-binding properties of Tau. Ait-Bouziad N; Chiki A; Limorenko G; Xiao S; Eliezer D; Lashuel HA J Biol Chem; 2020 Jun; 295(23):7905-7922. PubMed ID: 32341125 [TBL] [Abstract][Full Text] [Related]
38. O-GlcNAcylation modulates the self-aggregation ability of the fourth microtubule-binding repeat of tau. Yu CH; Si T; Wu WH; Hu J; Du JT; Zhao YF; Li YM Biochem Biophys Res Commun; 2008 Oct; 375(1):59-62. PubMed ID: 18671940 [TBL] [Abstract][Full Text] [Related]
39. Site-Specific Hyperphosphorylation Inhibits, Rather than Promotes, Tau Fibrillization, Seeding Capacity, and Its Microtubule Binding. Haj-Yahya M; Gopinath P; Rajasekhar K; Mirbaha H; Diamond MI; Lashuel HA Angew Chem Int Ed Engl; 2020 Mar; 59(10):4059-4067. PubMed ID: 31863676 [TBL] [Abstract][Full Text] [Related]
40. The influence of the ΔK280 mutation and N- or C-terminal extensions on the structure, dynamics, and fibril morphology of the tau R2 repeat. Raz Y; Adler J; Vogel A; Scheidt HA; Häupl T; Abel B; Huster D; Miller Y Phys Chem Chem Phys; 2014 May; 16(17):7710-7. PubMed ID: 24448233 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]