These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 39092914)
1. Structurally Diverse Stilbenoids as Potent α-Glucosidase Inhibitors with Antidiabetic Effect from Tian LL; Bi YX; Zhang H J Agric Food Chem; 2024 Aug; 72(32):17938-17952. PubMed ID: 39092914 [TBL] [Abstract][Full Text] [Related]
2. Bioassay-guided discovery and identification of new potent α-glucosidase inhibitors from Morus alba L. and the interaction mechanism. Tian LL; Bi YX; Wang C; Zhu K; Xu DF; Zhang H J Ethnopharmacol; 2024 Mar; 322():117645. PubMed ID: 38147942 [TBL] [Abstract][Full Text] [Related]
3. Quadruple high-resolution α-glucosidase/α-amylase/PTP1B/radical scavenging profiling combined with high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy for identification of antidiabetic constituents in crude root bark of Morus alba L. Zhao Y; Kongstad KT; Jäger AK; Nielsen J; Staerk D J Chromatogr A; 2018 Jun; 1556():55-63. PubMed ID: 29729863 [TBL] [Abstract][Full Text] [Related]
4. Chalcone derivatives from the root bark of Morus alba L. act as inhibitors of PTP1B and α-glucosidase. Ha MT; Seong SH; Nguyen TD; Cho WK; Ah KJ; Ma JY; Woo MH; Choi JS; Min BS Phytochemistry; 2018 Nov; 155():114-125. PubMed ID: 30103164 [TBL] [Abstract][Full Text] [Related]
5. Four New Flavonoids with α-Glucosidase Inhibitory Activities from Morus alba var. tatarica. Zhang YL; Luo JG; Wan CX; Zhou ZB; Kong LY Chem Biodivers; 2015 Nov; 12(11):1768-76. PubMed ID: 26567954 [TBL] [Abstract][Full Text] [Related]
6. A strategy for screening of α-glucosidase inhibitors from Morus alba root bark based on the ligand fishing combined with high-performance liquid chromatography mass spectrometer and molecular docking. Wang Z; Li X; Chen M; Liu F; Han C; Kong L; Luo J Talanta; 2018 Apr; 180():337-345. PubMed ID: 29332820 [TBL] [Abstract][Full Text] [Related]
7. Tetra-aryl cyclobutane and stilbenes from the rhizomes of Rheum undulatum and their α-glucosidase inhibitory activity: Biological evaluation, kinetic analysis, and molecular docking simulation. Ha MT; Kim M; Kim CS; Park SE; Kim JA; Woo MH; Choi JS; Min BS Bioorg Med Chem Lett; 2020 Apr; 30(8):127049. PubMed ID: 32111435 [TBL] [Abstract][Full Text] [Related]
8. Novel tetrahydrobenzo[b]thiophen-2-yl)urea derivatives as novel α-glucosidase inhibitors: Synthesis, kinetics study, molecular docking, and in vivo anti-hyperglycemic evaluation. Xie HX; Zhang J; Li Y; Zhang JH; Liu SK; Zhang J; Zheng H; Hao GZ; Zhu KK; Jiang CS Bioorg Chem; 2021 Oct; 115():105236. PubMed ID: 34411978 [TBL] [Abstract][Full Text] [Related]
9. In Vitro and Molecular Docking Evaluation of the Anticholinesterase and Antidiabetic Effects of Compounds from Feunaing RT; Tamfu AN; Gbaweng AJY; Kucukaydin S; Tchamgoue J; Lannang AM; Lenta BN; Kouam SF; Duru ME; Anouar EH; Talla E; Dinica RM Molecules; 2024 May; 29(11):. PubMed ID: 38893333 [TBL] [Abstract][Full Text] [Related]
10. Two novel compounds from the root bark of Morus alba L. Li M; Wu X; Wang X; Shen T; Ren D Nat Prod Res; 2018 Jan; 32(1):36-42. PubMed ID: 28521570 [TBL] [Abstract][Full Text] [Related]
11. Potential α-glucosidase inhibitor from Hylotelephium erythrostictum. Quan YS; Zhang XY; Yin XM; Wang SH; Jin LL Bioorg Med Chem Lett; 2020 Dec; 30(24):127665. PubMed ID: 33152378 [TBL] [Abstract][Full Text] [Related]
12. Evaluation and docking of indole sulfonamide as a potent inhibitor of α-glucosidase enzyme in streptozotocin -induced diabetic albino wistar rats. Taha M; Imran S; Salahuddin M; Iqbal N; Rahim F; Uddin N; Shehzad A; Khalid Farooq R; Alomari M; Mohammed Khan K Bioorg Chem; 2021 May; 110():104808. PubMed ID: 33756236 [TBL] [Abstract][Full Text] [Related]
13. Investigation on the Enzymatic Profile of Mulberry Alkaloids by Enzymatic Study and Molecular Docking. Liu Z; Yang Y; Dong W; Liu Q; Wang R; Pang J; Xia X; Zhu X; Liu S; Shen Z; Xiao Z; Liu Y Molecules; 2019 May; 24(9):. PubMed ID: 31071910 [TBL] [Abstract][Full Text] [Related]
14. Design, synthesis, biological evaluation, and docking study of chromone-based phenylhydrazone and benzoylhydrazone derivatives as antidiabetic agents targeting α-glucosidase. Fan M; Yang W; Liu L; Peng Z; He Y; Wang G Bioorg Chem; 2023 Mar; 132():106384. PubMed ID: 36696731 [TBL] [Abstract][Full Text] [Related]
15. Identification of highly potent α-glucosidase inhibitory and antioxidant constituents from Zizyphus rugosa bark: enzyme kinetic and molecular docking studies with active metabolites. Sichaem J; Aree T; Lugsanangarm K; Tip-Pyang S Pharm Biol; 2017 Dec; 55(1):1436-1441. PubMed ID: 28320255 [TBL] [Abstract][Full Text] [Related]
16. 3-Benzyl(phenethyl)-2-thioxobenzo[g]quinazolines as a new class of potent α-glucosidase inhibitors: synthesis and molecular docking study. Al-Salahi R; Ahmad R; Anouar E; Iwana Nor Azman NI; Marzouk M; Abuelizz HA Future Med Chem; 2018 Aug; 10(16):1889-1905. PubMed ID: 29882426 [TBL] [Abstract][Full Text] [Related]
17. Synthesis of new clioquinol derivatives as potent α-glucosidase inhibitors; molecular docking, kinetic and structure-activity relationship studies. Wali S; Atia-Tul-Wahab ; Ullah S; Khan MA; Hussain S; Shaikh M; Atta-Ur-Rahman ; Choudhary MI Bioorg Chem; 2022 Feb; 119():105506. PubMed ID: 34896920 [TBL] [Abstract][Full Text] [Related]
18. Synthesis and biological evaluation of indole derivatives containing thiazolidine-2,4-dione as α-glucosidase inhibitors with antidiabetic activity. Hu C; Liang B; Sun J; Li J; Xiong Z; Wang SH; Xuetao X Eur J Med Chem; 2024 Jan; 264():115957. PubMed ID: 38029465 [TBL] [Abstract][Full Text] [Related]