These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 39093039)
1. Erratum: An experimental study of the wall-pressure fluctuations beneath low Reynolds number turbulent boundary layers [J. Acoust. Soc. Am. 141, 1257-1268 (2017)]. Van Blitterswyk J; Rocha J J Acoust Soc Am; 2024 Aug; 156(2):725. PubMed ID: 39093039 [No Abstract] [Full Text] [Related]
2. An experimental study of the wall-pressure fluctuations beneath low Reynolds number turbulent boundary layers. Van Blitterswyk J; Rocha J J Acoust Soc Am; 2017 Feb; 141(2):1257. PubMed ID: 28253673 [TBL] [Abstract][Full Text] [Related]
3. Wind noise spectra in small Reynolds number turbulent flows. Zhao S; Cheng E; Qiu X; Burnett I; Liu JC J Acoust Soc Am; 2017 Nov; 142(5):3227. PubMed ID: 29195464 [TBL] [Abstract][Full Text] [Related]
4. Reynolds number trend of hierarchies and scale interactions in turbulent boundary layers. Baars WJ; Hutchins N; Marusic I Philos Trans A Math Phys Eng Sci; 2017 Mar; 375(2089):. PubMed ID: 28167573 [TBL] [Abstract][Full Text] [Related]
5. Characteristic-based non-linear simulation of large-scale standing-wave thermoacoustic engine. Abd El-Rahman AI; Abdel-Rahman E J Acoust Soc Am; 2014 Aug; 136(2):649-58. PubMed ID: 25096100 [TBL] [Abstract][Full Text] [Related]
6. Acoustic fields in binary gas mixtures: mutual diffusion effects throughout and beyond the boundary layers. Guianvarc'h C; Bruneau M J Acoust Soc Am; 2012 Jun; 131(6):4252-62. PubMed ID: 22712900 [TBL] [Abstract][Full Text] [Related]
7. High-Reynolds-number turbulent-boundary-layer wall pressure fluctuations with skin-friction reduction by air injection. Winkel ES; Elbing BR; Ceccio SL; Perlin M; Dowling DR J Acoust Soc Am; 2008 May; 123(5):2522-30. PubMed ID: 18529171 [TBL] [Abstract][Full Text] [Related]
8. Modelling high Reynolds number wall-turbulence interactions in laboratory experiments using large-scale free-stream turbulence. Dogan E; Hearst RJ; Ganapathisubramani B Philos Trans A Math Phys Eng Sci; 2017 Mar; 375(2089):. PubMed ID: 28167584 [TBL] [Abstract][Full Text] [Related]
9. Erratum: Thermal boundary layer limitations on the performance of micromachined microphones [J. Acoust. Soc. Am. 144(5), 2838-2846 (2018)]. Kuntzman ML; LoPresti JL; Du Y; Conklin WF; Naderyan V; Lee SB; Schafer D; Pedersen M; Loeppert PV J Acoust Soc Am; 2019 Jan; 145(1):327. PubMed ID: 30710978 [No Abstract] [Full Text] [Related]
10. Dynamic slip wall model for large-eddy simulation. Bae HJ; Lozano-Durán A; Bose ST; Moin P J Fluid Mech; 2019 Jan; 859():400-432. PubMed ID: 31631905 [TBL] [Abstract][Full Text] [Related]
11. The intensitive DL of tones: dependence of signal/masker ratio on tone level and on spectrum of added noise. Greenwood DD Hear Res; 1993 Feb; 65(1-2):1-39. PubMed ID: 8458743 [TBL] [Abstract][Full Text] [Related]
12. Stationarity and homogeneity assumptions in wavenumber-frequency representation of turbulent boundary layer wall pressure. Gloerfelt X J Acoust Soc Am; 2020 Oct; 148(4):2151. PubMed ID: 33138542 [TBL] [Abstract][Full Text] [Related]
13. Numerical study on the influence of wall temperature gradient on aerodynamic characteristics of low aspect ratio flying wing configuration. Lin P; Liu X; Xiong N; Wang X; Shang M; Liu G; Tao Y Sci Rep; 2021 Aug; 11(1):16295. PubMed ID: 34381068 [TBL] [Abstract][Full Text] [Related]
14. Erratum: Effect of evaporation and condensation on a thermoacoustic engine: A Lagrangian simulation approach [J. Acoust. Soc. Am. 141 (6), 4398-4407 (2017)]. Yasui K; Izu N J Acoust Soc Am; 2020 Jan; 147(1):267. PubMed ID: 32006972 [TBL] [Abstract][Full Text] [Related]
15. Phase relations in a forced turbulent boundary layer: implications for modelling of high Reynolds number wall turbulence. Duvvuri S; McKeon B Philos Trans A Math Phys Eng Sci; 2017 Mar; 375(2089):. PubMed ID: 28167576 [TBL] [Abstract][Full Text] [Related]
16. Erratum: Acoustics of monodisperse open-cell foam: An experimental and numerical parametric study [J. Acoust. Soc. Am. 148, 1767-1778 (2020)]. Langlois V; Kaddami A; Pitois O; Perrot C J Acoust Soc Am; 2022 Jan; 151(1):321. PubMed ID: 35105011 [No Abstract] [Full Text] [Related]