These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 39093689)
1. Evaluation of the In2Care Mosquito Station at low deployment density: a field study to manage Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae) in North Central Florida. McNamara TD; Vargas N; McDuffie D; Bartz CE; Mosore MT; Kline DL; Buckner EA; Jiang Y; Martin EM J Med Entomol; 2024 Sep; 61(5):1190-1202. PubMed ID: 39093689 [TBL] [Abstract][Full Text] [Related]
2. Deployment and Fact Analysis of the In2Care® Mosquito Trap, A Novel Tool for Controlling Invasive Aedes Species. Su T; Mullens P; Thieme J; Melgoza A; Real R; Brown MQ J Am Mosq Control Assoc; 2020 Sep; 36(3):167-174. PubMed ID: 33600585 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of In2Care mosquito stations for suppression of the Australian backyard mosquito, Aedes notoscriptus (Diptera: Culicidae). Paris V; Bell N; Schmidt TL; Endersby-Harshman NM; Hoffmann AA J Med Entomol; 2023 Sep; 60(5):1061-1072. PubMed ID: 37535973 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of the In2care Mosquito Station against Culex quinquefasciatus mosquitoes (Diptera: Culicidae) under semifield conditions. Buckner EA; Romero-Weaver AL; Schluep SM; Bellamy SK; Zimler RA; Kendziorski NL; Ramirez D; Whitehead SA J Med Entomol; 2024 Oct; ():. PubMed ID: 39373161 [TBL] [Abstract][Full Text] [Related]
5. Evaluating the Vector Control Potential of the In2Care® Mosquito Trap Against Aedes aegypti and Aedes albopictus Under Semifield Conditions in Manatee County, Florida. Buckner EA; Williams KF; Marsicano AL; Latham MD; Lesser CR J Am Mosq Control Assoc; 2017 Sep; 33(3):193-199. PubMed ID: 28854105 [TBL] [Abstract][Full Text] [Related]
6. A Field Efficacy Evaluation of In2Care Mosquito Traps in Comparison with Routine Integrated Vector Management at Reducing Aedes aegypti. Buckner EA; Williams KF; Ramirez S; Darrisaw C; Carrillo JM; Latham MD; Lesser CR J Am Mosq Control Assoc; 2021 Dec; 37(4):242-249. PubMed ID: 34817613 [TBL] [Abstract][Full Text] [Related]
7. Small-scale field assessment against the dengue vector Aedes aegypti using the auto-dissemination approach in an urban area of Vientiane, Lao PDR. Thammavong P; Boyer S; Luangamath P; Phommavanh N; Vungkyly V; Nilaxay S; Lakeomany K; Brey P; Grandadam M; Marcombe S PLoS One; 2022; 17(7):e0270987. PubMed ID: 35776762 [TBL] [Abstract][Full Text] [Related]
8. Laboratory evaluation of a juvenile hormone mimic, pyriproxyfen on Culex quinquefasciatus Say and Aedes aegypti Linn. at Mysore, India. Madhu SK; Vijayan VA J Commun Dis; 2009 Sep; 41(3):169-74. PubMed ID: 22010483 [TBL] [Abstract][Full Text] [Related]
9. Efficacy of the In2Care® auto-dissemination device for reducing dengue transmission: study protocol for a parallel, two-armed cluster randomised trial in the Philippines. Salazar F; Angeles J; Sy AK; Inobaya MT; Aguila A; Toner T; Bangs MJ; Thomsen E; Paul RE Trials; 2019 May; 20(1):269. PubMed ID: 31088515 [TBL] [Abstract][Full Text] [Related]
10. Recombinant Deng S-Q; Li N; Yang X-K; Lu H-Z; Liu J-H; Peng Z-Y; Wang L-M; Zhang M; Zhang C; Chen C Microbiol Spectr; 2024 Jul; 12(7):e0379223. PubMed ID: 38809029 [TBL] [Abstract][Full Text] [Related]
11. Targeting a Hidden Enemy: Pyriproxyfen Autodissemination Strategy for the Control of the Container Mosquito Aedes albopictus in Cryptic Habitats. Chandel K; Suman DS; Wang Y; Unlu I; Williges E; Williams GM; Gaugler R PLoS Negl Trop Dis; 2016 Dec; 10(12):e0005235. PubMed ID: 28033379 [TBL] [Abstract][Full Text] [Related]
12. Large-Scale Operational Pyriproxyfen Autodissemination Deployment to Suppress the Immature Asian Tiger Mosquito (Diptera: Culicidae) Populations. Unlu I; Rochlin I; Suman DS; Wang Y; Chandel K; Gaugler R J Med Entomol; 2020 Jul; 57(4):1120-1130. PubMed ID: 32006427 [TBL] [Abstract][Full Text] [Related]
13. Mosquito larvicidal potential of silver nanoparticles synthesized using Chomelia asiatica (Rubiaceae) against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae). Muthukumaran U; Govindarajan M; Rajeswary M Parasitol Res; 2015 Mar; 114(3):989-99. PubMed ID: 25544703 [TBL] [Abstract][Full Text] [Related]
14. Bio-efficacy of Soil Actinomycetes and an Isolated Molecule 1,2-Benzenedicarboxylic Acid from Nonomuraea sp. Against Culex quinquefasciatus Say and Aedes aegypti L. Mosquitoes (Diptera: Culicidae). Saravana Kumar P; Reegan AD; Rajakumari K; Asharaja AC; Balakrishna K; Ignacimuthu S Appl Biochem Biotechnol; 2022 Oct; 194(10):4765-4782. PubMed ID: 34806140 [TBL] [Abstract][Full Text] [Related]
15. Dual-treatment autodissemination station with enhanced transfer of an insect growth regulator to mosquito oviposition sites. Wang Y; Suman DS; Bertrand J; Dong L; Gaugler R Pest Manag Sci; 2014 Aug; 70(8):1299-304. PubMed ID: 24307332 [TBL] [Abstract][Full Text] [Related]
16. Insecticidal potency of bacterial species Bacillus thuringiensis SV2 and Serratia nematodiphila SV6 against larvae of mosquito species Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. Patil CD; Patil SV; Salunke BK; Salunkhe RB Parasitol Res; 2012 May; 110(5):1841-7. PubMed ID: 22065062 [TBL] [Abstract][Full Text] [Related]
17. Effectiveness of autodissemination stations containing pyriproxyfen in reducing immature Aedes albopictus populations. Unlu I; Suman DS; Wang Y; Klingler K; Faraji A; Gaugler R Parasit Vectors; 2017 Mar; 10(1):139. PubMed ID: 28279191 [TBL] [Abstract][Full Text] [Related]
18. Testing of Visual and Chemical Attractants in Correlation with the Development and Field Evaluation of an Autodissemination Station for the Suppression of Aedes aegypti and Aedes albopictus in Florida. Kartzinel MA; Alto BW; Deblasio MW; Burkett-Cadena ND J Am Mosq Control Assoc; 2016 Sep; 32(3):194-202. PubMed ID: 27802398 [TBL] [Abstract][Full Text] [Related]
19. Behavioural response of mosquito vectors Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus to synthetic pyrethroid and organophosphorus-based slow-release insecticidal paint. Dhiman S; Yadav K; Acharya BN; Ahirwar RK; Sukumaran D Parasit Vectors; 2021 May; 14(1):259. PubMed ID: 34001242 [TBL] [Abstract][Full Text] [Related]
20. Green synthesis of silver nanoparticles using Sida acuta (Malvaceae) leaf extract against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae). Veerakumar K; Govindarajan M; Rajeswary M Parasitol Res; 2013 Dec; 112(12):4073-85. PubMed ID: 24005479 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]