These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 39094149)

  • 1. Characterizing Biphoton Spatial Wave Function Dynamics with Quantum Wavefront Sensing.
    Zheng Y; Liu ZD; Miao RH; Cui JM; Yang M; Xu XY; Xu JS; Li CF; Guo GC
    Phys Rev Lett; 2024 Jul; 133(3):033602. PubMed ID: 39094149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shack-Hartmann Wavefront Sensing of Ultrashort Optical Vortices.
    Pandey AK; Larrieu T; Dovillaire G; Kazamias S; Guilbaud O
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biphoton engineering using modal spatial overlap on-chip.
    Ding X; Ma J; Tan L; Helmy AS; Kang D
    Opt Lett; 2022 Dec; 47(23):6097-6100. PubMed ID: 37219181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct generation of spatially entangled qudits using quantum nonlinear optical holography.
    Yesharim O; Pearl S; Foley-Comer J; Juwiler I; Arie A
    Sci Adv; 2023 Feb; 9(8):eade7968. PubMed ID: 36827364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topological protection of biphoton states.
    Blanco-Redondo A; Bell B; Oren D; Eggleton BJ; Segev M
    Science; 2018 Nov; 362(6414):568-571. PubMed ID: 30385574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting momentum weak value: Shack-Hartmann versus a weak measurement wavefront sensor.
    Zheng Y; Yang M; Liu ZH; Xu JS; Li CF; Guo GC
    Opt Lett; 2021 Nov; 46(21):5352-5355. PubMed ID: 34724473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biphoton generation in quadratic waveguide arrays: a classical optical simulation.
    Gräfe M; Solntsev AS; Keil R; Sukhorukov AA; Heinrich M; Tünnermann A; Nolte S; Szameit A; Kivshar YS
    Sci Rep; 2012; 2():562. PubMed ID: 22872807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum manipulation of biphoton spectral distributions in a 2D frequency space toward arbitrary shaping of a biphoton wave packet.
    Jin RB; Shiina R; Shimizu R
    Opt Express; 2018 Aug; 26(16):21153-21158. PubMed ID: 30119419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptable Shack-Hartmann wavefront sensor with diffractive lenslet arrays to mitigate the effects of scintillation.
    Lechner D; Zepp A; Eichhorn M; Gładysz S
    Opt Express; 2020 Nov; 28(24):36188-36205. PubMed ID: 33379719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The X-like shaped spatiotemporal structure of the biphoton entangled state in a cold two-level atomic ensemble.
    Zhang D; Zhang Z
    Sci Rep; 2017 Feb; 7():42373. PubMed ID: 28218235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient compressive and Bayesian characterization of biphoton frequency spectra.
    Simmerman EM; Lu HH; Weiner AM; Lukens JM
    Opt Lett; 2020 May; 45(10):2886-2889. PubMed ID: 32412493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fractional topological phase measurement with a hyperentangled photon source.
    Matoso AA; Ribeiro RA; Oxman LE; Khoury AZ; Pádua S
    Sci Rep; 2019 Jan; 9(1):577. PubMed ID: 30679702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Topological protection of dual-polarization biphoton states in photonic crystals.
    Chen C; Ye B; Zhang H; Zhou Y; Jin S; Hao R
    Appl Opt; 2024 Apr; 63(12):3237-3241. PubMed ID: 38856472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of two-photon wave function in parametric down conversion by adaptive optics control of the pump radiation.
    Minozzi M; Bonora S; Sergienko AV; Vallone G; Villoresi P
    Opt Lett; 2013 Feb; 38(4):489-91. PubMed ID: 23455112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revisiting the comparison between the Shack-Hartmann and the pyramid wavefront sensors via the Fisher information matrix.
    Plantet C; Meimon S; Conan JM; Fusco T
    Opt Express; 2015 Nov; 23(22):28619-33. PubMed ID: 26561131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-photon quantum walk in a multimode fiber.
    Defienne H; Barbieri M; Walmsley IA; Smith BJ; Gigan S
    Sci Adv; 2016 Jan; 2(1):e1501054. PubMed ID: 27152325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum-correlated two-photon transitions to excitons in semiconductor quantum wells.
    Salazar LJ; Guzmán DA; Rodríguez FJ; Quiroga L
    Opt Express; 2012 Feb; 20(4):4470-83. PubMed ID: 22418206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proposed Scheme to Generate Bright Entangled Photon Pairs by Application of a Quadrupole Field to a Single Quantum Dot.
    Zeeshan M; Sherlekar N; Ahmadi A; Williams RL; Reimer ME
    Phys Rev Lett; 2019 Jun; 122(22):227401. PubMed ID: 31283293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Projection of two biphoton qutrits onto a maximally entangled state.
    Halevy A; Megidish E; Shacham T; Dovrat L; Eisenberg HS
    Phys Rev Lett; 2011 Apr; 106(13):130502. PubMed ID: 21517363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hartmann-Shack wavefront sensing without a lenslet array using a digital micromirror device.
    Vohnsen B; Carmichael Martins A; Qaysi S; Sharmin N
    Appl Opt; 2018 Aug; 57(22):E199-E204. PubMed ID: 30117885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.