These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 39094649)
1. Chemical speciation and rice uptake of soil molybdenum-Investigation with X-ray absorption spectroscopy and isotope fractionation. Yang PT; Liang YH; Lee DC; Wang SL Sci Total Environ; 2024 Nov; 949():175141. PubMed ID: 39094649 [TBL] [Abstract][Full Text] [Related]
2. Temporal transformation of indium speciation in rice paddy soils and spatial distribution of indium in rice rhizosphere. Chang HF; Yang PT; Hashimoto Y; Yeh KC; Wang SL Environ Pollut; 2023 Jun; 326():121473. PubMed ID: 36958661 [TBL] [Abstract][Full Text] [Related]
3. Distribution and speciation of copper in rice (Oryza sativa L.) from mining-impacted paddy soil: Implications for copper uptake mechanisms. Cui JL; Zhao YP; Lu YJ; Chan TS; Zhang LL; Tsang DCW; Li XD Environ Int; 2019 May; 126():717-726. PubMed ID: 30878867 [TBL] [Abstract][Full Text] [Related]
4. Arsenic distribution and speciation near rice roots influenced by iron plaques and redox conditions of the soil matrix. Yamaguchi N; Ohkura T; Takahashi Y; Maejima Y; Arao T Environ Sci Technol; 2014; 48(3):1549-56. PubMed ID: 24384039 [TBL] [Abstract][Full Text] [Related]
5. Soil gallium speciation and resulting gallium uptake by rice plants. Chen KY; Yang PT; Chang HF; Yeh KC; Wang SL J Hazard Mater; 2022 Feb; 424(Pt C):127582. PubMed ID: 34741941 [TBL] [Abstract][Full Text] [Related]
6. Cadmium uptake and transport processes in rice revealed by stable isotope fractionation and Cd-related gene expression. Zhong S; Li X; Li F; Huang Y; Liu T; Yin H; Qiao J; Chen G; Huang F Sci Total Environ; 2022 Feb; 806(Pt 2):150633. PubMed ID: 34592274 [TBL] [Abstract][Full Text] [Related]
7. Effect of silicate on arsenic fractionation in soils and its accumulation in rice plants. Wu C; Zou Q; Xue SG; Pan WS; Yue X; Hartley W; Huang L; Mo JY Chemosphere; 2016 Dec; 165():478-486. PubMed ID: 27677123 [TBL] [Abstract][Full Text] [Related]
8. Cadmium transfer in contaminated soil-rice systems: Insights from solid-state speciation analysis and stable isotope fractionation. Wiggenhauser M; Aucour AM; Bureau S; Campillo S; Telouk P; Romani M; Ma JF; Landrot G; Sarret G Environ Pollut; 2021 Jan; 269():115934. PubMed ID: 33277064 [TBL] [Abstract][Full Text] [Related]
9. Roles of Chloride and Sulfate Ions in Controlling Cadmium Transport in a Soil-Rice System as Evidenced by the Cd Isotope Fingerprint. Zhong S; Fang L; Li X; Liu T; Wang P; Gao R; Chen G; Yin H; Yang Y; Huang F; Li F Environ Sci Technol; 2023 Nov; 57(46):17920-17929. PubMed ID: 37755710 [TBL] [Abstract][Full Text] [Related]
10. The translocation of antimony in soil-rice system with comparisons to arsenic: Alleviation of their accumulation in rice by simultaneous use of Fe(II) and NO Wang X; Li F; Yuan C; Li B; Liu T; Liu C; Du Y; Liu C Sci Total Environ; 2019 Feb; 650(Pt 1):633-641. PubMed ID: 30212692 [TBL] [Abstract][Full Text] [Related]
11. Effects and mechanisms of meta-sodium silicate amendments on lead uptake and accumulation by rice. Zhao M; Liu Y; Li H; Cai Y; Wang MK; Chen Y; Xie T; Wang G Environ Sci Pollut Res Int; 2017 Sep; 24(27):21700-21709. PubMed ID: 28762046 [TBL] [Abstract][Full Text] [Related]
12. Tracing Molybdenum Attenuation in Mining Environments Using Molybdenum Stable Isotopes. Skierszkan EK; Robertson JM; Lindsay MBJ; Stockwell JS; Dockrey JW; Das S; Weis D; Beckie RD; Mayer KU Environ Sci Technol; 2019 May; 53(10):5678-5686. PubMed ID: 30998001 [TBL] [Abstract][Full Text] [Related]
13. X-ray absorption spectroscopic investigation of molybdenum multinuclear sorption mechanism at the Goethite-water interface. Arai Y Environ Sci Technol; 2010 Nov; 44(22):8491-6. PubMed ID: 20964355 [TBL] [Abstract][Full Text] [Related]
14. Water Management Alters Cadmium Isotope Fractionation between Shoots and Nodes/Leaves in a Soil-Rice System. Zhong S; Li X; Li F; Liu T; Huang F; Yin H; Chen G; Cui J Environ Sci Technol; 2021 Oct; 55(19):12902-12913. PubMed ID: 34520188 [TBL] [Abstract][Full Text] [Related]
15. Do soil Fe transformation and secretion of low-molecular-weight organic acids affect the availability of Cd to rice? Chen X; Yang Y; Liu D; Zhang C; Ge Y Environ Sci Pollut Res Int; 2015 Dec; 22(24):19497-506. PubMed ID: 26260840 [TBL] [Abstract][Full Text] [Related]
16. Impact of Flooding-Drainage Alternation on Fe Uptake and Transport in Rice: Novel Insights from Iron Isotopes. Zhong S; Yu S; Liu Y; Gao R; Pan D; Chen G; Li X; Liu T; Liu C; Li F J Agric Food Chem; 2024 Jan; 72(3):1500-1508. PubMed ID: 38165827 [TBL] [Abstract][Full Text] [Related]
17. Effects of long-term paddy rice cultivation on soil arsenic speciation. Yang PT; Hashimoto Y; Wu WJ; Huang JH; Chiang PN; Wang SL J Environ Manage; 2020 Jan; 254():109768. PubMed ID: 31698298 [TBL] [Abstract][Full Text] [Related]
18. Arsenic localization, speciation, and co-occurrence with iron on rice (Oryza sativa L.) roots having variable Fe coatings. Seyfferth AL; Webb SM; Andrews JC; Fendorf S Environ Sci Technol; 2010 Nov; 44(21):8108-13. PubMed ID: 20936818 [TBL] [Abstract][Full Text] [Related]
19. Spatial imaging and speciation of Cu in rice (Oryza sativa L.) roots using synchrotron-based X-ray microfluorescence and X-ray absorption spectroscopy. Lu L; Xie R; Liu T; Wang H; Hou D; Du Y; He Z; Yang X; Sun H; Tian S Chemosphere; 2017 May; 175():356-364. PubMed ID: 28235745 [TBL] [Abstract][Full Text] [Related]
20. Multifunctional Roles of Zinc in Cadmium Transport in Soil-Rice Systems: Novel Insights from Stable Isotope Fractionation and Gene Expression. Zhong S; Li X; Fang L; Bai J; Gao R; Huang Y; Huang Y; Liu Y; Liu C; Yin H; Liu T; Huang F; Li F Environ Sci Technol; 2024 Jul; 58(28):12467-12476. PubMed ID: 38966939 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]