These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 3909603)

  • 1. Scatterer-induced frequency variations in reflected acoustic pulses: implications for tissue characterization.
    Gehlbach SM; Sommer FG; Stern RA
    Ultrason Imaging; 1985 Apr; 7(2):172-8. PubMed ID: 3909603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On estimating the number density of random scatterers from backscattered acoustic signals.
    Sleefe GE; Lele PP
    Ultrasound Med Biol; 1988; 14(8):709-27. PubMed ID: 3062865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An adaptive ultrasonic backscattered signal processing technique for instantaneous characteristic frequency detection.
    Jin B; Vai MI
    Biomed Mater Eng; 2014; 24(6):2761-70. PubMed ID: 25226981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasonic characterization of abdominal tissues via digital analysis of backscattered waveforms.
    Sommer FG; Joynt LF; Carroll BA; Macovski A
    Radiology; 1981 Dec; 141(3):811-7. PubMed ID: 7302239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The acoustic properties, centered on 20 MHZ, of an IEC agar-based tissue-mimicking material and its temperature, frequency and age dependence.
    Brewin MP; Pike LC; Rowland DE; Birch MJ
    Ultrasound Med Biol; 2008 Aug; 34(8):1292-306. PubMed ID: 18343021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Doppler diagnosis in peripheral arterial occlusive disease].
    Marshall M
    Herz; 1988 Dec; 13(6):358-71. PubMed ID: 3061917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue characterization based on scatterer number density estimation.
    Sleefe GE; Lele PP
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(6):749-57. PubMed ID: 18290212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Texture of B-mode echograms: 3-D simulations and experiments of the effects of diffraction and scatterer density.
    Oosterveld BJ; Thijssen JM; Verhoef WA
    Ultrason Imaging; 1985 Apr; 7(2):142-60. PubMed ID: 3909602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prospects for ultrasonic spectroscopy and spectral imaging of abdominal tissues.
    Sommer FG; Stetson P; Chen HS; Stern RA; Rachlin DJ; Macovski A
    J Ultrasound Med; 1993 Feb; 12(2):83-90. PubMed ID: 8468741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Golay improvement of the robustness of mean scatterer spacing measurement with ultrasonic backscattering.
    Pan W; Shen Y; Liu T; Wang Y
    Biomed Mater Eng; 2015; 26 Suppl 1():S455-65. PubMed ID: 26406037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of a system for ultrasonic imaging of attenuation and texture in soft tissue.
    Salomonsson G; Löfström B
    Ultrason Imaging; 1985 Jul; 7(3):225-43. PubMed ID: 3913098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of tissue parameters derived from reflected ultrasound.
    Shiina T; Ikeda K; Saito M
    Med Prog Technol; 1987; 12(3-4):185-95. PubMed ID: 3306305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of ultrasonic parameters based on attenuation and dispersion measurements.
    He P
    Ultrason Imaging; 1998 Oct; 20(4):275-87. PubMed ID: 10197348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging local scatterer concentrations by the Nakagami statistical model.
    Tsui PH; Chang CC
    Ultrasound Med Biol; 2007 Apr; 33(4):608-19. PubMed ID: 17343979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative tests of a three-dimensional gray scale texture model.
    Zagzebski JA; Madsen EL; Goodsitt MM
    Ultrason Imaging; 1985 Jul; 7(3):252-63. PubMed ID: 3913099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stochastic frequency-domain tissue characterization: application to human spleens "in vivo'.
    Sommer FG; Joynt LF; Hayes DL; Macovski A
    Ultrasonics; 1982 Mar; 20(2):82-6. PubMed ID: 7058562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-frequency ultrasound backscattering by blood: analytical and semianalytical models of the erythrocyte cross section.
    Savéry D; Cloutier G
    J Acoust Soc Am; 2007 Jun; 121(6):3963-71. PubMed ID: 17552743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age determination of experimental venous thrombi by ultrasonic tissue characterization.
    Parsons RE; Sigel B; Feleppa EJ; Golub RM; Kodama I; Loiacono LA; Justin J; Swami VK; Kimitsuki H; Rorke M
    J Vasc Surg; 1993 Mar; 17(3):470-8. PubMed ID: 8445741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Ultrasonic tissue characterization of diseased myocardium by scanning acoustic microscopy].
    Saijo Y; Sasaki H; Naganuma T; Tanaka M
    J Cardiol; 1995 Mar; 25(3):127-32. PubMed ID: 7722873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasonic backscattering from human tissue: a realistic model.
    Gore JC; Leeman S
    Phys Med Biol; 1977 Mar; 22(2):317-26. PubMed ID: 857266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.