These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 39096611)

  • 1. Synthetic 3D full-body skeletal motion from 2D paths using RNN with LSTM cells and linear networks.
    Carneros-Prado D; Dobrescu CC; Cabañero L; Villa L; Altamirano-Flores YV; Lopez-Nava IH; González I; Fontecha J; Hervás R
    Comput Biol Med; 2024 Sep; 180():108943. PubMed ID: 39096611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning approach to predict center of pressure trajectories in a complete gait cycle: a feedforward neural network vs. LSTM network.
    Choi A; Jung H; Lee KY; Lee S; Mun JH
    Med Biol Eng Comput; 2019 Dec; 57(12):2693-2703. PubMed ID: 31650342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of lower limb joint angles and moments during gait using artificial neural networks.
    Mundt M; Thomsen W; Witter T; Koeppe A; David S; Bamer F; Potthast W; Markert B
    Med Biol Eng Comput; 2020 Jan; 58(1):211-225. PubMed ID: 31823114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic neural network approach to targeted balance assessment of individuals with and without neurological disease during non-steady-state locomotion.
    Pickle NT; Shearin SM; Fey NP
    J Neuroeng Rehabil; 2019 Jul; 16(1):88. PubMed ID: 31300001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Individualized Gait Generation for Rehabilitation Robots Based on Recurrent Neural Networks.
    Zhou Z; Liang B; Huang G; Liu B; Nong J; Xie L
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():273-281. PubMed ID: 33332274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial neural network model for the generation of muscle activation patterns for human locomotion.
    Prentice SD; Patla AE; Stacey DA
    J Electromyogr Kinesiol; 2001 Feb; 11(1):19-30. PubMed ID: 11166605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using Synthesized IMU Data to Train a Long-Short Term Memory-based Neural Network for Unobtrusive Gait Analysis with a Sparse Sensor Setup.
    Lueken M; Wenner J; Leonhardt S; Ngo C
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3653-3656. PubMed ID: 36086654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative Study of Markerless Vision-Based Gait Analyses for Person Re-Identification.
    Kwon J; Lee Y; Lee J
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of ground reaction forces and ankle moment with multiple, low-cost sensors.
    Jacobs DA; Ferris DP
    J Neuroeng Rehabil; 2015 Oct; 12():90. PubMed ID: 26467753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lower limb sagittal kinematic and kinetic modeling of very slow walking for gait trajectory scaling.
    Smith AJJ; Lemaire ED; Nantel J
    PLoS One; 2018; 13(9):e0203934. PubMed ID: 30222772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lower body kinematics estimation from wearable sensors for walking and running: A deep learning approach.
    Hernandez V; Dadkhah D; Babakeshizadeh V; Kulić D
    Gait Posture; 2021 Jan; 83():185-193. PubMed ID: 33161275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting Transitioning Walking Gaits: Hip and Knee Joint Trajectories From the Motion of Walking Canes.
    Mounir Boudali A; Sinclair PJ; Manchester IR
    IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1791-1800. PubMed ID: 31398125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative evaluation of unrestrained human gait on change in walking velocity.
    Makino Y; Tsujiuchi N; Ito A; Koizumi T; Nakamura S; Matsuda Y; Tsuchiya Y; Hayashi Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2521-4. PubMed ID: 25570503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of Lower Extremity Multi-Joint Angles during Overground Walking by Using a Single IMU with a Low Frequency Based on an LSTM Recurrent Neural Network.
    Sung J; Han S; Park H; Cho HM; Hwang S; Park JW; Youn I
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Side to side kinematic gait differences within patients and spatiotemporal and kinematic gait differences between patients with severe knee osteoarthritis and controls measured with inertial sensors.
    Ismailidis P; Hegglin L; Egloff C; Pagenstert G; Kernen R; Eckardt A; Ilchmann T; Nüesch C; Mündermann A
    Gait Posture; 2021 Feb; 84():24-30. PubMed ID: 33260078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From deep learning to transfer learning for the prediction of skeletal muscle forces.
    Dao TT
    Med Biol Eng Comput; 2019 May; 57(5):1049-1058. PubMed ID: 30552553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model-based data augmentation for user-independent fatigue estimation.
    Jiang Y; Malliaras P; Chen B; Kulić D
    Comput Biol Med; 2021 Oct; 137():104839. PubMed ID: 34520991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Residual analysis of ground reaction forces simulation during gait using neural networks with different configurations.
    Leporace G; Batista LA; Metsavaht L; Nadal J
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():2812-5. PubMed ID: 26736876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Wearable Lower Limb Rehabilitation Exoskeleton Kinematic Analysis and Simulation.
    Li J; Peng J; Lu Z; Huang K
    Biomed Res Int; 2022; 2022():5029663. PubMed ID: 36072470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial Neural Network Detects Hip Muscle Forces as Determinant for Harmonic Walking in People after Stroke.
    Iosa M; Benedetti MG; Antonucci G; Paolucci S; Morone G
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.