These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 39096781)
1. Fundamental investigation of impact of water and TFA additions in peptide sub/supercritical fluid separations. Samuelsson J; Leśko M; Thunberg L; Weinmann AL; Limé F; Enmark M; Fornstedt T J Chromatogr A; 2024 Sep; 1732():465203. PubMed ID: 39096781 [TBL] [Abstract][Full Text] [Related]
2. The importance of ion-pairing in peptide purification by reversed-phase liquid chromatography. Åsberg D; Langborg Weinmann A; Leek T; Lewis RJ; Klarqvist M; Leśko M; Kaczmarski K; Samuelsson J; Fornstedt T J Chromatogr A; 2017 May; 1496():80-91. PubMed ID: 28363419 [TBL] [Abstract][Full Text] [Related]
3. Systematic investigations of peak deformations due to co-solvent adsorption in preparative supercritical fluid chromatography. Glenne E; Leek H; Klarqvist M; Samuelsson J; Fornstedt T J Chromatogr A; 2017 May; 1496():141-149. PubMed ID: 28366564 [TBL] [Abstract][Full Text] [Related]
4. Effect of mobile phase additives on solute retention at low aqueous pH in hydrophilic interaction liquid chromatography. McCalley DV J Chromatogr A; 2017 Feb; 1483():71-79. PubMed ID: 28069167 [TBL] [Abstract][Full Text] [Related]
5. Development of a novel method for polar metabolite profiling by supercritical fluid chromatography/tandem mass spectrometry. Konya Y; Izumi Y; Bamba T J Chromatogr A; 2020 Nov; 1632():461587. PubMed ID: 33059177 [TBL] [Abstract][Full Text] [Related]
6. Determining gradient conditions for peptide purification in RPLC with machine-learning-based retention time predictions. Samuelsson J; Eiriksson FF; Åsberg D; Thorsteinsdóttir M; Fornstedt T J Chromatogr A; 2019 Aug; 1598():92-100. PubMed ID: 30961963 [TBL] [Abstract][Full Text] [Related]
7. Advantageous use of SFC for separation of crude therapeutic peptides and peptide libraries. Ventura M J Pharm Biomed Anal; 2020 Jun; 185():113227. PubMed ID: 32353707 [TBL] [Abstract][Full Text] [Related]
8. Peak deformations in preparative supercritical fluid chromatography due to co-solvent adsorption. Glenne E; Leek H; Klarqvist M; Samuelsson J; Fornstedt T J Chromatogr A; 2016 Oct; 1468():200-208. PubMed ID: 27641721 [TBL] [Abstract][Full Text] [Related]
9. Effects of high concentrations of mobile phase additives on retention and separation mechanisms on a teicoplanin aglycone stationary phase in supercritical fluid chromatography. Raimbault A; West C J Chromatogr A; 2019 Oct; 1604():460494. PubMed ID: 31488292 [TBL] [Abstract][Full Text] [Related]
10. Chaotropic Effects in Sub/Supercritical Fluid Chromatography via Ammonium Hydroxide in Water-Rich Modifiers: Enabling Separation of Peptides and Highly Polar Pharmaceuticals at the Preparative Scale. Liu J; Makarov AA; Bennett R; Haidar Ahmad IA; DaSilva J; Reibarkh M; Mangion I; Mann BF; Regalado EL Anal Chem; 2019 Nov; 91(21):13907-13915. PubMed ID: 31549812 [TBL] [Abstract][Full Text] [Related]
11. Modeling the competitive adsorption of sample solvent and solute in supercritical fluid chromatography. Rédei C; Felinger A J Chromatogr A; 2019 Oct; 1603():348-354. PubMed ID: 31164229 [TBL] [Abstract][Full Text] [Related]
12. The effect of column history in supercritical fluid chromatography: Practical implications. Plachká K; Střítecký J; Svec F; Nováková L J Chromatogr A; 2021 Aug; 1651():462272. PubMed ID: 34107402 [TBL] [Abstract][Full Text] [Related]
13. Systematic investigations of peak distortions due to additives in supercritical fluid chromatography. Glenne E; Samuelsson J; Leek H; Forssén P; Klarqvist M; Fornstedt T J Chromatogr A; 2020 Jun; 1621():461048. PubMed ID: 32204879 [TBL] [Abstract][Full Text] [Related]
14. Using the fundamentals of adsorption to understand peak distortion due to strong solvent effect in hydrophilic interaction chromatography. Gritti F; Sehajpal J; Fairchild J J Chromatogr A; 2017 Mar; 1489():95-106. PubMed ID: 28193468 [TBL] [Abstract][Full Text] [Related]
15. Unravelling the effects of mobile phase additives in supercritical fluid chromatography-Part II: Adsorption on the stationary phase. West C; Lemasson E J Chromatogr A; 2019 May; 1593():135-146. PubMed ID: 30803789 [TBL] [Abstract][Full Text] [Related]
16. The adsorption of methanol on reversed phase stationary phases in supercritical fluid chromatography. Kazmouz MY; Rédei C; Felinger A J Chromatogr A; 2021 Sep; 1653():462386. PubMed ID: 34274884 [TBL] [Abstract][Full Text] [Related]
17. A systematic investigation of the effect of sample solvent on peak shape in nano- and microflow hydrophilic interaction liquid chromatography columns. Li H; Liu C; Zhao L; Xu D; Zhang T; Wang Q; Cabooter D; Jiang Z J Chromatogr A; 2021 Oct; 1655():462498. PubMed ID: 34496327 [TBL] [Abstract][Full Text] [Related]
18. Characterization and use of hydrophilic interaction liquid chromatography type stationary phases in supercritical fluid chromatography. West C; Khater S; Lesellier E J Chromatogr A; 2012 Aug; 1250():182-95. PubMed ID: 22647190 [TBL] [Abstract][Full Text] [Related]
19. Application of hydrophilic interaction chromatography retention coefficients for predicting peptide elution with TFA and methanesulfonic acid ion-pairing reagents. Wujcik CE; Tweed J; Kadar EP J Sep Sci; 2010 Mar; 33(6-7):826-33. PubMed ID: 20087867 [TBL] [Abstract][Full Text] [Related]
20. Volume and composition of semi-adsorbed stationary phases in hydrophilic interaction liquid chromatography. Comparison of water adsorption in common stationary phases and eluents. Redón L; Subirats X; Rosés M J Chromatogr A; 2021 Oct; 1656():462543. PubMed ID: 34571282 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]