These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 39096835)
1. Feasibility of differentiating gait in Parkinson's disease and spinocerebellar degeneration using a pose estimation algorithm in two-dimensional video. Eguchi K; Yaguchi H; Uwatoko H; Iida Y; Hamada S; Honma S; Takei A; Moriwaka F; Yabe I J Neurol Sci; 2024 Sep; 464():123158. PubMed ID: 39096835 [TBL] [Abstract][Full Text] [Related]
2. Differentiation of speech in Parkinson's disease and spinocerebellar degeneration using deep neural networks. Eguchi K; Yaguchi H; Kudo I; Kimura I; Nabekura T; Kumagai R; Fujita K; Nakashiro Y; Iida Y; Hamada S; Honma S; Takei A; Moriwaka F; Yabe I J Neurol; 2024 Feb; 271(2):1004-1012. PubMed ID: 37989963 [TBL] [Abstract][Full Text] [Related]
3. Quantitative Gait Analysis Using a Pose-Estimation Algorithm with a Single 2D-Video of Parkinson's Disease Patients. Shin JH; Yu R; Ong JN; Lee CY; Jeon SH; Park H; Kim HJ; Lee J; Jeon B J Parkinsons Dis; 2021; 11(3):1271-1283. PubMed ID: 33935106 [TBL] [Abstract][Full Text] [Related]
4. Video-Based Detection of Freezing of Gait in Daily Clinical Practice in Patients With Parkinsonism. Kondo Y; Bando K; Suzuki I; Miyazaki Y; Nishida D; Hara T; Kadone H; Suzuki K IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2250-2260. PubMed ID: 38865235 [TBL] [Abstract][Full Text] [Related]
5. A Clinically Interpretable Computer-Vision Based Method for Quantifying Gait in Parkinson's Disease. Rupprechter S; Morinan G; Peng Y; Foltynie T; Sibley K; Weil RS; Leyland LA; Baig F; Morgante F; Gilron R; Wilt R; Starr P; Hauser RA; O'Keeffe J Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450879 [TBL] [Abstract][Full Text] [Related]
6. A smartphone-based architecture to detect and quantify freezing of gait in Parkinson's disease. Capecci M; Pepa L; Verdini F; Ceravolo MG Gait Posture; 2016 Oct; 50():28-33. PubMed ID: 27567449 [TBL] [Abstract][Full Text] [Related]
7. Prediction of Freezing of Gait in Parkinson's Disease Using Wearables and Machine Learning. Borzì L; Mazzetta I; Zampogna A; Suppa A; Olmo G; Irrera F Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33477323 [TBL] [Abstract][Full Text] [Related]
8. Differentiating Parkinson's disease motor subtypes: A radiomics analysis based on deep gray nuclear lesion and white matter. Sun D; Wu X; Xia Y; Wu F; Geng Y; Zhong W; Zhang W; Guo D; Li C Neurosci Lett; 2021 Aug; 760():136083. PubMed ID: 34174346 [TBL] [Abstract][Full Text] [Related]
9. Prediction and detection of freezing of gait in Parkinson's disease from plantar pressure data using long short-term memory neural-networks. Shalin G; Pardoel S; Lemaire ED; Nantel J; Kofman J J Neuroeng Rehabil; 2021 Nov; 18(1):167. PubMed ID: 34838066 [TBL] [Abstract][Full Text] [Related]
10. Measuring freezing of gait during daily-life: an open-source, wearable sensors approach. Mancini M; Shah VV; Stuart S; Curtze C; Horak FB; Safarpour D; Nutt JG J Neuroeng Rehabil; 2021 Jan; 18(1):1. PubMed ID: 33397401 [TBL] [Abstract][Full Text] [Related]
11. Automatic Detection and Assessment of Freezing of Gait Manifestations. Yang PK; Filtjens B; Ginis P; Goris M; Nieuwboer A; Gilat M; Slaets P; Vanrumste B IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2699-2708. PubMed ID: 39028610 [TBL] [Abstract][Full Text] [Related]
12. Stepping analysis in patients with spinocerebellar degeneration and Parkinson's disease. Sasaki O; Taguchi K; Kikukawa M; Ogiba T Acta Otolaryngol; 1993 Jul; 113(4):466-70. PubMed ID: 8379300 [TBL] [Abstract][Full Text] [Related]
14. Assessing gait dysfunction severity in Parkinson's Disease using 2-Stream Spatial-Temporal Neural Network. Liang A J Biomed Inform; 2024 Sep; 157():104679. PubMed ID: 38925280 [TBL] [Abstract][Full Text] [Related]
15. Temporal and spatial characteristics of plantar pressure center trajectory for identifying early Parkinson's disease gait. Zhang X; Li Y; Wang P; Zhao Q Parkinsonism Relat Disord; 2024 Jul; 124():106998. PubMed ID: 38729069 [TBL] [Abstract][Full Text] [Related]
16. What the trained eye cannot see: Quantitative kinematics and machine learning detect movement deficits in early-stage Parkinson's disease from videos. Guarín DL; Wong JK; McFarland NR; Ramirez-Zamora A; Vaillancourt DE Parkinsonism Relat Disord; 2024 Oct; 127():107104. PubMed ID: 39153421 [TBL] [Abstract][Full Text] [Related]
17. Detecting freezing-of-gait during unscripted and unconstrained activity. Cole BT; Roy SH; Nawab SH Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5649-52. PubMed ID: 22255621 [TBL] [Abstract][Full Text] [Related]
18. Ambulatory Gait Behavior in Patients With Dementia: A Comparison With Parkinson's Disease. Yoneyama M; Mitoma H; Sanjo N; Higuma M; Terashi H; Yokota T IEEE Trans Neural Syst Rehabil Eng; 2016 Aug; 24(8):817-26. PubMed ID: 26372429 [TBL] [Abstract][Full Text] [Related]
19. [The most probable clinical diagnosis to the applicants for the intractable disease registration of Parkinson's disease, spinocerebellar degeneration and amyotrophic lateral sclerosis]. Narita Y; Taniguchi A; Kuzuhara S Rinsho Shinkeigaku; 2006 Mar; 46(3):193-8. PubMed ID: 16642929 [TBL] [Abstract][Full Text] [Related]
20. Unconstrained detection of freezing of Gait in Parkinson's disease patients using smartphone. Kim H; Lee HJ; Lee W; Kwon S; Kim SK; Jeon HS; Park H; Shin CW; Yi WJ; Jeon BS; Park KS Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():3751-4. PubMed ID: 26737109 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]