These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 39097027)
1. Chromolaena odorata affects soil nitrogen transformations and competition in tropical coral islands by altering soil ammonia oxidizing microbes. Yuan C; Gao J; Huang L; Jian S Sci Total Environ; 2024 Nov; 950():175196. PubMed ID: 39097027 [TBL] [Abstract][Full Text] [Related]
2. Rhizosphere microbial community construction during the latitudinal spread of the invader Chromolaena odorata. Zhang MZ; Li WT; Liu WJ; Zheng YL BMC Microbiol; 2024 Aug; 24(1):294. PubMed ID: 39107680 [TBL] [Abstract][Full Text] [Related]
3. Soil nitrogen dynamics and competition during plant invasion: insights from Mikania micrantha invasions in China. Yu H; Le Roux JJ; Jiang Z; Sun F; Peng C; Li W New Phytol; 2021 Mar; 229(6):3440-3452. PubMed ID: 33259063 [TBL] [Abstract][Full Text] [Related]
4. Integrating novel chemical weapons and evolutionarily increased competitive ability in success of a tropical invader. Zheng YL; Feng YL; Zhang LK; Callaway RM; Valiente-Banuet A; Luo DQ; Liao ZY; Lei YB; Barclay GF; Silva-Pereyra C New Phytol; 2015 Feb; 205(3):1350-1359. PubMed ID: 25367824 [TBL] [Abstract][Full Text] [Related]
5. The effect of phosphorus, irradiance and competitor identity on the relative performance of invasive Chromolaena odorata. Zheng YL BMC Plant Biol; 2024 Oct; 24(1):953. PubMed ID: 39394569 [TBL] [Abstract][Full Text] [Related]
6. Soil legacy effects on biomass allocation depend on native plant diversity in the invaded community. Li W; Bi X; Zheng Y Sci Prog; 2023; 106(1):368504221150060. PubMed ID: 36751108 [TBL] [Abstract][Full Text] [Related]
7. Invasive Chromolaena odorata species specifically affects growth of its co-occurring weeds. Xu QY; Wang D; Quan GM; Xiang HM; Zhang JE Ann N Y Acad Sci; 2020 Jun; 1470(1):57-66. PubMed ID: 32170773 [TBL] [Abstract][Full Text] [Related]
8. Phytoremediation potential of Jampasri K; Saeng-Ngam S; Larpkern P; Jantasorn A; Kruatrachue M Int J Phytoremediation; 2021; 23(10):1061-1066. PubMed ID: 33501846 [TBL] [Abstract][Full Text] [Related]
9. Differential patterns of nitrogen nutrition and growth cost of the indigenous Ndzwanana Z; Tsvuura Z; Valentine AJ; Pérez-Fernández MA; Magadlela A AoB Plants; 2019 Jun; 11(3):plz008. PubMed ID: 31198527 [No Abstract] [Full Text] [Related]
10. Phytoremediation of fuel oil and lead co-contaminated soil by Chromolaena odorata in association with Micrococcus luteus. Jampasri K; Pokethitiyook P; Kruatrachue M; Ounjai P; Kumsopa A Int J Phytoremediation; 2016 Oct; 18(10):994-1001. PubMed ID: 27159380 [TBL] [Abstract][Full Text] [Related]
11. Ageratina adenophora invasions are associated with microbially mediated differences in biogeochemical cycles. Zhao M; Lu X; Zhao H; Yang Y; Hale L; Gao Q; Liu W; Guo J; Li Q; Zhou J; Wan F Sci Total Environ; 2019 Aug; 677():47-56. PubMed ID: 31051382 [TBL] [Abstract][Full Text] [Related]
12. Changes in arbuscular mycorrhizal fungal communities, mycorrhizal soil infectivity, and phosphorus availability under Chromolaena odorata (Asteraceae) invasions in a West-African forest-savanna ecotone. Touré GT; Koné AW; Nandjui J; Ebou AET; Otinga AN; Maïga AA; Kouadjo CGZ; Tiho S; Zézé A Mycorrhiza; 2023 Jul; 33(4):257-275. PubMed ID: 37289330 [TBL] [Abstract][Full Text] [Related]
13. Invasion success in a marginal habitat: an experimental test of competitive ability and drought tolerance in Chromolaena odorata. te Beest M; Elschot K; Olff H; Etienne RS PLoS One; 2013; 8(8):e68274. PubMed ID: 23936301 [TBL] [Abstract][Full Text] [Related]
14. Effects of myclobutanil on soil microbial biomass, respiration, and soil nitrogen transformations. Ju C; Xu J; Wu X; Dong F; Liu X; Zheng Y Environ Pollut; 2016 Jan; 208(Pt B):811-20. PubMed ID: 26590854 [TBL] [Abstract][Full Text] [Related]
15. Different types of land use influence soil physiochemical properties, the abundance of nitrifying bacteria, and microbial interactions in tropical urban soil. Medriano CA; Chan A; De Sotto R; Bae S Sci Total Environ; 2023 Apr; 869():161722. PubMed ID: 36690092 [TBL] [Abstract][Full Text] [Related]
16. Vertical distribution of ammonia-oxidizing microorganisms across a soil profile of the Chinese Loess Plateau and their responses to nitrogen inputs. Tao J; Bai T; Xiao R; Wang P; Wang F; Duryee AM; Wang Y; Zhang Y; Hu S Sci Total Environ; 2018 Sep; 635():240-248. PubMed ID: 29665543 [TBL] [Abstract][Full Text] [Related]
17. The potential of Chromolaena odorata (L) to decontaminate used engine oil impacted soil under greenhouse conditions. Atagana HI Int J Phytoremediation; 2011 Aug; 13(7):627-41. PubMed ID: 21972491 [TBL] [Abstract][Full Text] [Related]
18. Soil nitrogen cycling is determined by the competition between mycorrhiza and ammonia-oxidizing prokaryotes. Tatsumi C; Taniguchi T; Du S; Yamanaka N; Tateno R Ecology; 2020 Mar; 101(3):e02963. PubMed ID: 31872432 [TBL] [Abstract][Full Text] [Related]
19. Species composition, functional and phylogenetic distances correlate with success of invasive Chromolaena odorata in an experimental test. Zheng YL; Burns JH; Liao ZY; Li YP; Yang J; Chen YJ; Zhang JL; Zheng YG Ecol Lett; 2018 Aug; 21(8):1211-1220. PubMed ID: 29808558 [TBL] [Abstract][Full Text] [Related]
20. Abundance and diversity of ammonia-oxidizing prokaryotes in the root-rhizosphere complex of Miscanthus × giganteus grown in heavy metal-contaminated soils. Ollivier J; Wanat N; Austruy A; Hitmi A; Joussein E; Welzl G; Munch JC; Schloter M Microb Ecol; 2012 Nov; 64(4):1038-46. PubMed ID: 22688859 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]