These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 39098100)
1. On the discrepancy between crossovers of solubility in supercritical carbon dioxide and retention in supercritical fluid chromatography. Pokrovskiy O; Rostovschikova I J Chromatogr A; 2024 Sep; 1732():465210. PubMed ID: 39098100 [TBL] [Abstract][Full Text] [Related]
2. Usual, unusual and unbelievable retention behavior in achiral supercritical fluid chromatography: Review and discussion. Lesellier E J Chromatogr A; 2020 Mar; 1614():460582. PubMed ID: 31604584 [TBL] [Abstract][Full Text] [Related]
3. Use of isopycnic plots in designing operations of supercritical fluid chromatography: II. The isopycnic plots and the selection of the operating pressure-temperature zone in supercritical fluid chromatography. Tarafder A; Guiochon G J Chromatogr A; 2011 Jul; 1218(28):4576-85. PubMed ID: 21658698 [TBL] [Abstract][Full Text] [Related]
4. Infinite dilution partial molar volumes of platinum(II) 2,4-pentanedionate in supercritical carbon dioxide. Kong CY; Siratori T; Funazukuri T; Wang G J Chromatogr A; 2014 Oct; 1362():294-300. PubMed ID: 25169720 [TBL] [Abstract][Full Text] [Related]
5. Unexpected retention behavior of supercritical fluid chromatography at the low density near critical region of carbon dioxide. Tarafder A; Guiochon G J Chromatogr A; 2012 Mar; 1229():249-59. PubMed ID: 22310277 [TBL] [Abstract][Full Text] [Related]
6. Peak deformations in preparative supercritical fluid chromatography due to co-solvent adsorption. Glenne E; Leek H; Klarqvist M; Samuelsson J; Fornstedt T J Chromatogr A; 2016 Oct; 1468():200-208. PubMed ID: 27641721 [TBL] [Abstract][Full Text] [Related]
7. Use of isopycnic plots in designing operations of supercritical fluid chromatography: I. The critical role of density in determining the characteristics of the mobile phase in supercritical fluid chromatography. Tarafder A; Guiochon G J Chromatogr A; 2011 Jul; 1218(28):4569-75. PubMed ID: 21652036 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of temperature and pressure effects on retention in supercritical fluid chromatography on polar stationary phases. Ovchinnikov DV; Pokrovskiy OI; Kosyakov DS; Bogolitsyn KG; Ul'yanovskii NV; Falev DI J Chromatogr A; 2020 Jan; 1610():460600. PubMed ID: 31610921 [TBL] [Abstract][Full Text] [Related]
10. Retention characteristics of silica materials in carbon dioxide/methanol mixtures studied by inverse supercritical fluid chromatography. Sun M; Ruiz Barbero S; Johannsen M; Smirnova I; Gurikov P J Chromatogr A; 2019 Mar; 1588():127-136. PubMed ID: 30658911 [TBL] [Abstract][Full Text] [Related]
11. Method developments approaches in supercritical fluid chromatography applied to the analysis of cosmetics. Lesellier E; Mith D; Dubrulle I J Chromatogr A; 2015 Dec; 1423():158-68. PubMed ID: 26553956 [TBL] [Abstract][Full Text] [Related]
12. Effect of reference conditions on flow rate, modifier fraction and retention in supercritical fluid chromatography. De Pauw R; Shoykhet Choikhet K; Desmet G; Broeckhoven K J Chromatogr A; 2016 Aug; 1459():129-135. PubMed ID: 27401813 [TBL] [Abstract][Full Text] [Related]
13. Investigation of retention behavior of drug molecules in supercritical fluid chromatography using linear solvation energy relationships. Bui H; Masquelin T; Perun T; Castle T; Dage J; Kuo MS J Chromatogr A; 2008 Oct; 1206(2):186-95. PubMed ID: 18771773 [TBL] [Abstract][Full Text] [Related]
14. Maximizing performance in supercritical fluid chromatography using low-density mobile phases. Gritti F; Fogwill M; Gilar M; Jarrell JA J Chromatogr A; 2016 Oct; 1468():217-227. PubMed ID: 27658377 [TBL] [Abstract][Full Text] [Related]
15. Systematic investigations of peak deformations due to co-solvent adsorption in preparative supercritical fluid chromatography. Glenne E; Leek H; Klarqvist M; Samuelsson J; Fornstedt T J Chromatogr A; 2017 May; 1496():141-149. PubMed ID: 28366564 [TBL] [Abstract][Full Text] [Related]
16. Pressure, temperature and density drops along supercritical fluid chromatography columns in different thermal environments. III. Mixtures of carbon dioxide and methanol as the mobile phase. Poe DP; Veit D; Ranger M; Kaczmarski K; Tarafder A; Guiochon G J Chromatogr A; 2014 Jan; 1323():143-56. PubMed ID: 24315126 [TBL] [Abstract][Full Text] [Related]
17. Supercritical Fluid Chromatography development of a predictive analytical tool to selectively extract bioactive compounds by supercritical fluid extraction and pressurised liquid extraction. Lefebvre T; Destandau E; West C; Lesellier E J Chromatogr A; 2020 Nov; 1632():461582. PubMed ID: 33035852 [TBL] [Abstract][Full Text] [Related]
18. Unravelling the effects of mobile phase additives in supercritical fluid chromatography-Part II: Adsorption on the stationary phase. West C; Lemasson E J Chromatogr A; 2019 May; 1593():135-146. PubMed ID: 30803789 [TBL] [Abstract][Full Text] [Related]
19. Extended zones of operations in supercritical fluid chromatography. Tarafder A; Guiochon G J Chromatogr A; 2012 Nov; 1265():165-75. PubMed ID: 23084824 [TBL] [Abstract][Full Text] [Related]
20. Modelling of retention in analytical supercritical fluid chromatography for CO2-Methanol mobile phase. Leśko M; Poe DP; Kaczmarski K J Chromatogr A; 2013 Aug; 1305():285-92. PubMed ID: 23891374 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]