These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Design and engineering of artificial oxygen-activating metalloenzymes. Nastri F; Chino M; Maglio O; Bhagi-Damodaran A; Lu Y; Lombardi A Chem Soc Rev; 2016 Sep; 45(18):5020-54. PubMed ID: 27341693 [TBL] [Abstract][Full Text] [Related]
7. Repurposing metalloproteins as mimics of natural metalloenzymes for small-molecule activation. DiPrimio DJ; Holland PL J Inorg Biochem; 2021 Jun; 219():111430. PubMed ID: 33873051 [TBL] [Abstract][Full Text] [Related]
8. Foldamer Tertiary Structure through Sequence-Guided Protein Backbone Alteration. George KL; Horne WS Acc Chem Res; 2018 May; 51(5):1220-1228. PubMed ID: 29672021 [TBL] [Abstract][Full Text] [Related]
9. Rational Design of Artificial Metalloproteins and Metalloenzymes with Metal Clusters. Lin YW Molecules; 2019 Jul; 24(15):. PubMed ID: 31362341 [TBL] [Abstract][Full Text] [Related]
11. Selective C-H bond functionalization using repurposed or artificial metalloenzymes. Upp DM; Lewis JC Curr Opin Chem Biol; 2017 Apr; 37():48-55. PubMed ID: 28135654 [TBL] [Abstract][Full Text] [Related]
12. Metalloenzyme design and engineering through strategic modifications of native protein scaffolds. Petrik ID; Liu J; Lu Y Curr Opin Chem Biol; 2014 Apr; 19():67-75. PubMed ID: 24513641 [TBL] [Abstract][Full Text] [Related]
13. Functional metalloenzymes based on myoglobin and neuroglobin that exploit covalent interactions. Lin YW J Inorg Biochem; 2024 Aug; 257():112595. PubMed ID: 38759262 [TBL] [Abstract][Full Text] [Related]
14. Design of artificial metalloproteins/metalloenzymes by tuning noncovalent interactions. Hirota S; Lin YW J Biol Inorg Chem; 2018 Jan; 23(1):7-25. PubMed ID: 29218629 [TBL] [Abstract][Full Text] [Related]
15. De Novo Design of Metalloproteins and Metalloenzymes in a Three-Helix Bundle. Plegaria JS; Pecoraro VL Methods Mol Biol; 2016; 1414():187-96. PubMed ID: 27094292 [TBL] [Abstract][Full Text] [Related]
16. Towards the Evolution of Artificial Metalloenzymes-A Protein Engineer's Perspective. Markel U; Sauer DF; Schiffels J; Okuda J; Schwaneberg U Angew Chem Int Ed Engl; 2019 Mar; 58(14):4454-4464. PubMed ID: 30431222 [TBL] [Abstract][Full Text] [Related]
17. Myoglobins engineered with artificial cofactors serve as artificial metalloenzymes and models of natural enzymes. Oohora K; Hayashi T Dalton Trans; 2021 Feb; 50(6):1940-1949. PubMed ID: 33433532 [TBL] [Abstract][Full Text] [Related]
18. Recent achievments in the design and engineering of artificial metalloenzymes. Dürrenberger M; Ward TR Curr Opin Chem Biol; 2014 Apr; 19():99-106. PubMed ID: 24608081 [TBL] [Abstract][Full Text] [Related]
19. Emerging strategies for expanding the toolbox of enzymes in biocatalysis. Sandoval BA; Hyster TK Curr Opin Chem Biol; 2020 Apr; 55():45-51. PubMed ID: 31935627 [TBL] [Abstract][Full Text] [Related]