These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. NNICE: a deep quantile neural network algorithm for expression deconvolution. Jin YW; Hu P; Liu Q Sci Rep; 2024 Jun; 14(1):14040. PubMed ID: 38890415 [TBL] [Abstract][Full Text] [Related]
4. scPLAN: a hierarchical computational framework for single transcriptomics data annotation, integration and cell-type label refinement. Guo Q; Yuan M; Zhang L; Deng M Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38935069 [TBL] [Abstract][Full Text] [Related]
5. A hybrid deep clustering approach for robust cell type profiling using single-cell RNA-seq data. Srinivasan S; Leshchyk A; Johnson NT; Korkin D RNA; 2020 Oct; 26(10):1303-1319. PubMed ID: 32532794 [TBL] [Abstract][Full Text] [Related]
6. Deep learning tackles single-cell analysis-a survey of deep learning for scRNA-seq analysis. Flores M; Liu Z; Zhang T; Hasib MM; Chiu YC; Ye Z; Paniagua K; Jo S; Zhang J; Gao SJ; Jin YF; Chen Y; Huang Y Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34929734 [TBL] [Abstract][Full Text] [Related]
7. Integrating Deep Supervised, Self-Supervised and Unsupervised Learning for Single-Cell RNA-seq Clustering and Annotation. Chen L; Zhai Y; He Q; Wang W; Deng M Genes (Basel); 2020 Jul; 11(7):. PubMed ID: 32674393 [TBL] [Abstract][Full Text] [Related]
8. SFINN: inferring gene regulatory network from single-cell and spatial transcriptomic data with shared factor neighborhood and integrated neural network. Wang Y; Zhou F; Guan J Bioinformatics; 2024 Jul; 40(7):. PubMed ID: 38950180 [TBL] [Abstract][Full Text] [Related]
9. Deep learning of gene relationships from single cell time-course expression data. Yuan Y; Bar-Joseph Z Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33876191 [TBL] [Abstract][Full Text] [Related]
10. A comparison of RNA-Seq data preprocessing pipelines for transcriptomic predictions across independent studies. Van R; Alvarez D; Mize T; Gannavarapu S; Chintham Reddy L; Nasoz F; Han MV BMC Bioinformatics; 2024 May; 25(1):181. PubMed ID: 38720247 [TBL] [Abstract][Full Text] [Related]
11. Computational Analysis of Single-Cell RNA-Seq Data. Alessandrì L; Cordero F; Beccuti M; Arigoni M; Calogero RA Methods Mol Biol; 2021; 2284():289-301. PubMed ID: 33835449 [TBL] [Abstract][Full Text] [Related]
12. Improving cell type identification with Gaussian noise-augmented single-cell RNA-seq contrastive learning. Alsaggaf I; Buchan D; Wan C Brief Funct Genomics; 2024 Jul; 23(4):441-451. PubMed ID: 38242863 [TBL] [Abstract][Full Text] [Related]
13. Deconvolution from bulk gene expression by leveraging sample-wise and gene-wise similarities and single-cell RNA-Seq data. Wang C; Lin Y; Li S; Guan J BMC Genomics; 2024 Sep; 25(1):875. PubMed ID: 39294558 [TBL] [Abstract][Full Text] [Related]
14. scDeepSort: a pre-trained cell-type annotation method for single-cell transcriptomics using deep learning with a weighted graph neural network. Shao X; Yang H; Zhuang X; Liao J; Yang P; Cheng J; Lu X; Chen H; Fan X Nucleic Acids Res; 2021 Dec; 49(21):e122. PubMed ID: 34500471 [TBL] [Abstract][Full Text] [Related]
15. Continually adapting pre-trained language model to universal annotation of single-cell RNA-seq data. Wan H; Yuan M; Fu Y; Deng M Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38388681 [TBL] [Abstract][Full Text] [Related]
16. Deep generative model embedding of single-cell RNA-Seq profiles on hyperspheres and hyperbolic spaces. Ding J; Regev A Nat Commun; 2021 May; 12(1):2554. PubMed ID: 33953202 [TBL] [Abstract][Full Text] [Related]
17. Assessing parameter efficient methods for pre-trained language model in annotating scRNA-seq data. Xia Y; Liu Y; Li T; He S; Chang H; Wang Y; Zhang Y; Ge W Methods; 2024 Aug; 228():12-21. PubMed ID: 38759908 [TBL] [Abstract][Full Text] [Related]
18. Annotating cell types in human single-cell RNA-seq data with CellO. Bernstein MN; Dewey CN STAR Protoc; 2021 Sep; 2(3):100705. PubMed ID: 34458864 [TBL] [Abstract][Full Text] [Related]
19. A neural network-based method for exhaustive cell label assignment using single cell RNA-seq data. Li Z; Feng H Sci Rep; 2022 Jan; 12(1):910. PubMed ID: 35042860 [TBL] [Abstract][Full Text] [Related]
20. DeepGRNCS: deep learning-based framework for jointly inferring gene regulatory networks across cell subpopulations. Lei Y; Huang XT; Guo X; Hang Katie Chan K; Gao L Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38980373 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]