These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 39098981)
1. Visco-hyperelastic material model fitting to experimental stress-strain curves using a genetic algorithm and its application to soft tissue simulants. Gómez-Garraza S; de Santos R; Infante-García D; Marco M Sci Rep; 2024 Aug; 14(1):18026. PubMed ID: 39098981 [TBL] [Abstract][Full Text] [Related]
2. A constitutive model for ballistic gelatin at surgical strain rates. Ravikumar N; Noble C; Cramphorn E; Taylor ZA J Mech Behav Biomed Mater; 2015 Jul; 47():87-94. PubMed ID: 25863009 [TBL] [Abstract][Full Text] [Related]
3. Development and parameter identification of a visco-hyperelastic model for the periodontal ligament. Huang H; Tang W; Tan Q; Yan B J Mech Behav Biomed Mater; 2017 Apr; 68():210-215. PubMed ID: 28187321 [TBL] [Abstract][Full Text] [Related]
4. A visco-hyperelastic-damage constitutive model for the analysis of the biomechanical response of the periodontal ligament. Natali AN; Carniel EL; Pavan PG; Sander FG; Dorow C; Geiger M J Biomech Eng; 2008 Jun; 130(3):031004. PubMed ID: 18532853 [TBL] [Abstract][Full Text] [Related]
5. A three-dimensional fractional visco-hyperelastic model for soft materials. Gao Y; Yin D; Tang M; Zhao B J Mech Behav Biomed Mater; 2023 Jan; 137():105564. PubMed ID: 36395676 [TBL] [Abstract][Full Text] [Related]
6. Visco-hyperelastic characterization of human brain white matter micro-level constituents in different strain rates. Ramzanpour M; Hosseini-Farid M; McLean J; Ziejewski M; Karami G Med Biol Eng Comput; 2020 Sep; 58(9):2107-2118. PubMed ID: 32671675 [TBL] [Abstract][Full Text] [Related]
7. Identification of the visco-hyperelastic properties of brain white matter based on the combination of inverse method and experiment. Liu Q; Liu J; Guan F; Han X; Cao L; Shan K Med Biol Eng Comput; 2019 May; 57(5):1109-1120. PubMed ID: 30635831 [TBL] [Abstract][Full Text] [Related]
8. Modeling fatigue failure in soft tissue using a visco-hyperelastic model with discontinuous damage. Henderson BS; Cudworth KF; Peña E; Lujan TJ J Mech Behav Biomed Mater; 2023 Aug; 144():105968. PubMed ID: 37390777 [TBL] [Abstract][Full Text] [Related]
9. A clinically applicable non-invasive method to quantitatively assess the visco-hyperelastic properties of human heel pad, implications for assessing the risk of mechanical trauma. Behforootan S; Chatzistergos PE; Chockalingam N; Naemi R J Mech Behav Biomed Mater; 2017 Apr; 68():287-295. PubMed ID: 28222391 [TBL] [Abstract][Full Text] [Related]
10. A visco-hyperelastic model for skeletal muscle tissue under high strain rates. Lu YT; Zhu HX; Richmond S; Middleton J J Biomech; 2010 Sep; 43(13):2629-32. PubMed ID: 20566197 [TBL] [Abstract][Full Text] [Related]
11. [Determination of a visco-hyperelastic material law based on dynamic tension test data]. Ren L; Jiang C; Chen Y; Hu Y Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2018 Oct; 35(5):767-773. PubMed ID: 30370717 [TBL] [Abstract][Full Text] [Related]
12. A three-dimensional visco-hyperelastic FE model for simulating the mechanical dynamic response of preloaded phalanges. Noël C Med Eng Phys; 2018 Nov; 61():41-50. PubMed ID: 30262138 [TBL] [Abstract][Full Text] [Related]
13. Constitutive formulation and numerical analysis of the biomechanical behaviour of forefoot plantar soft tissue. Fontanella CG; Favaretto E; Carniel EL; Natali AN Proc Inst Mech Eng H; 2014 Sep; 228(9):942-51. PubMed ID: 25313025 [TBL] [Abstract][Full Text] [Related]
14. Identifiability of soft tissue constitutive parameters from in-vivo macro-indentation. Oddes Z; Solav D J Mech Behav Biomed Mater; 2023 Apr; 140():105708. PubMed ID: 36801779 [TBL] [Abstract][Full Text] [Related]
15. Finite element analysis of blood clots based on the nonlinear visco-hyperelastic model. Tashiro K; Shobayashi Y; Ota I; Hotta A Biophys J; 2021 Oct; 120(20):4547-4556. PubMed ID: 34478700 [TBL] [Abstract][Full Text] [Related]
16. Characterization of perfused and sectioned liver tissue in a full indentation cycle using a visco-hyperelastic model. Li L; Maccabi A; Abiri A; Juo YY; Zhang W; Chang YJ; Saddik GN; Jin L; Grundfest WS; Dutson EP; Eldredge JD; Benharash P; Candler RN J Mech Behav Biomed Mater; 2019 Feb; 90():591-603. PubMed ID: 30500697 [TBL] [Abstract][Full Text] [Related]
17. Finite element simulation for the effect of loading rate on visco-hyperelastic characterisation of soft materials by spherical nanoindentation. Wang L; Liu X IET Nanobiotechnol; 2019 Aug; 13(6):578-583. PubMed ID: 31432789 [TBL] [Abstract][Full Text] [Related]
18. A visco-hyperelastic constitutive model and its application in bovine tongue tissue. Yousefi AK; Nazari MA; Perrier P; Panahi MS; Payan Y J Biomech; 2018 Apr; 71():190-198. PubMed ID: 29477259 [TBL] [Abstract][Full Text] [Related]
19. Volumetric locking free 3D finite element for modelling of anisotropic visco-hyperelastic behaviour of anterior cruciate ligament. Bijalwan A; Patel BP; Marieswaran M; Kalyanasundaram D J Biomech; 2018 May; 73():1-8. PubMed ID: 29599040 [TBL] [Abstract][Full Text] [Related]
20. Calibration of hyperelastic constitutive models: the role of boundary conditions, search algorithms, and experimental variability. Kenja K; Madireddy S; Vemaganti K Biomech Model Mechanobiol; 2020 Oct; 19(5):1935-1952. PubMed ID: 32140961 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]