These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
45. Two-dimensional nanomaterial based sensors for heavy metal ions. Gan X; Zhao H; Schirhagl R; Quan X Mikrochim Acta; 2018 Sep; 185(10):478. PubMed ID: 30255387 [TBL] [Abstract][Full Text] [Related]
47. Plasmonic Metamaterials for Nanochemistry and Sensing. Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511 [TBL] [Abstract][Full Text] [Related]
48. A "turn-on" inverse opal photonic crystal fluorescent sensing film for detection of cysteine and its bioimaging of living cells. Li H; Han B; Ma H; Li R; Hou X; Zhang Y; Wang JJ Mikrochim Acta; 2023 Jan; 190(2):49. PubMed ID: 36630016 [TBL] [Abstract][Full Text] [Related]
49. Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering. Wang AX; Kong X Materials (Basel); 2015 Jun; 8(6):3024-3052. PubMed ID: 26900428 [TBL] [Abstract][Full Text] [Related]
50. A review on MXene and its nanocomposites for the detection of toxic inorganic gases. Devaraj M; Rajendran S; Hoang TKA; Soto-Moscoso M Chemosphere; 2022 Sep; 302():134933. PubMed ID: 35561780 [TBL] [Abstract][Full Text] [Related]
51. Photon Management Enabled by Opal and Inverse Opal Photonic Crystals: from Photocatalysis to Photoluminescence Regulation. Wang H; Cheng Y; Zhu J; Zhang L Chempluschem; 2024 Jul; 89(7):e202400002. PubMed ID: 38527947 [TBL] [Abstract][Full Text] [Related]
52. Applications and developments of on-chip biochemical sensors based on optofluidic photonic crystal cavities. Zhang YN; Zhao Y; Zhou T; Wu Q Lab Chip; 2017 Dec; 18(1):57-74. PubMed ID: 29125166 [TBL] [Abstract][Full Text] [Related]
53. Aptamer-based photonic crystals enable ultra-trace detection of staphylococcal enterotoxin B without labels. Qin T; Hong Y; Han D; Li S; Ning B; Li Z; Wang J; Bai J; Gao Z; Peng Y Food Chem; 2022 Oct; 391():133271. PubMed ID: 35623283 [TBL] [Abstract][Full Text] [Related]
54. Gold nanoparticle incorporated inverse opal photonic crystal capillaries for optofluidic surface enhanced Raman spectroscopy. Zhao X; Xue J; Mu Z; Huang Y; Lu M; Gu Z Biosens Bioelectron; 2015 Oct; 72():268-74. PubMed ID: 25988995 [TBL] [Abstract][Full Text] [Related]
55. Visible transparency tuning and corresponding sensing application of opal photonic crystals. Chen C; Hu Q; Yin K Opt Express; 2021 Nov; 29(24):40419-40427. PubMed ID: 34809383 [TBL] [Abstract][Full Text] [Related]
56. Laser-written photonic crystal optofluidics for electrochromatography and spectroscopy on a chip. Haque M; Zacharia NS; Ho S; Herman PR Biomed Opt Express; 2013; 4(8):1472-85. PubMed ID: 24010009 [TBL] [Abstract][Full Text] [Related]
57. Visual Recognition of Volatile Organic Compounds by Photonic Nose Integrated with Multiple Metal-Organic Frameworks. Gao L; Kou D; Lin R; Ma W; Zhang S Small; 2024 Jul; 20(27):e2308641. PubMed ID: 38282134 [TBL] [Abstract][Full Text] [Related]
58. Recent Progress in Spinel Ferrite (MFe Zhang R; Qin C; Bala H; Wang Y; Cao J Nanomaterials (Basel); 2023 Jul; 13(15):. PubMed ID: 37570506 [TBL] [Abstract][Full Text] [Related]
59. Construction of photonic crystals with thermally adjustable pseudo-gaps. Li C; Xue Q; Ji Z; Li Y; Zhang H; Li D Soft Matter; 2020 Mar; 16(12):3063-3068. PubMed ID: 32133472 [TBL] [Abstract][Full Text] [Related]
60. Fast Self-Assembly of Photonic Crystal Hydrogel for Wearable Strain and Temperature Sensor. Liu H; Wang Y; Shi Z; Tan D; Yang X; Xiong L; Li G; Lei Y; Xue L Small Methods; 2022 Jul; 6(7):e2200461. PubMed ID: 35521951 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]