These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 39100089)
1. Assembly and comparative genome analysis of four mitochondrial genomes from Li S; Yang C; Wang Z; Xu C; Zhang G; Huang Y; Zhang B; Zhou S; Gao Y; Zong W; Duan W; Yang X Front Plant Sci; 2024; 15():1421170. PubMed ID: 39100089 [No Abstract] [Full Text] [Related]
2. Whole chloroplast genome and gene locus phylogenies reveal the taxonomic placement and relationship of Tripidium (Panicoideae: Andropogoneae) to sugarcane. Lloyd Evans D; Joshi SV; Wang J BMC Evol Biol; 2019 Jan; 19(1):33. PubMed ID: 30683070 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of genome size and phylogenetic relationships of the Ling K; Yi-Ning D; Majeed A; Zi-Jiang Y; Jun-Wen C; Li-Lian H; Xian-Hong W; Lu-Feng L; Zhen-Feng Q; Dan Z; Shu-Jie G; Rong X; Lin-Yan X; Fu X; Yang D; Fu-Sheng L 3 Biotech; 2022 Nov; 12(11):327. PubMed ID: 36276474 [TBL] [Abstract][Full Text] [Related]
4. Phylogenetics of Miscanthus, Saccharum and related genera (Saccharinae, Andropogoneae, Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnLintron and trnL-F intergenic spacers. Hodkinson TR; Chase MW; Lledó MD; Salamin N; Renvoize SA J Plant Res; 2002 Oct; 115(5):381-92. PubMed ID: 12579363 [TBL] [Abstract][Full Text] [Related]
5. Comparative Analysis of Chloroplast Genome in Li S; Duan W; Zhao J; Jing Y; Feng M; Kuang B; Wei N; Chen B; Yang X Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887005 [TBL] [Abstract][Full Text] [Related]
6. Phylogenetic analysis of chloroplast restriction enzyme site mutations in the Saccharinae Griseb. subtribe of the Andropogoneae Dumort. tribe. Sobral BW; Braga DP; Lahood ES; Keim P Theor Appl Genet; 1994 Feb; 87(7):843-53. PubMed ID: 24190471 [TBL] [Abstract][Full Text] [Related]
7. Phylogenetic analysis of organellar DNA sequences in the Andropogoneae: Saccharinae. Al-Janabi SM; McClelland M; Petersen C; Sobral BW Theor Appl Genet; 1994 Sep; 88(8):933-44. PubMed ID: 24186245 [TBL] [Abstract][Full Text] [Related]
8. Complete Chloroplast Genomes of Erianthus arundinaceus and Miscanthus sinensis: Comparative Genomics and Evolution of the Saccharum Complex. Tsuruta SI; Ebina M; Kobayashi M; Takahashi W PLoS One; 2017; 12(1):e0169992. PubMed ID: 28125648 [TBL] [Abstract][Full Text] [Related]
9. Phylogenetic analysis of Saccharum s.l. (Poaceae; Andropogoneae), with emphasis on the circumscription of the South American species. Welker CA; Souza-Chies TT; Longhi-Wagner HM; Peichoto MC; McKain MR; Kellogg EA Am J Bot; 2015 Feb; 102(2):248-63. PubMed ID: 25667078 [TBL] [Abstract][Full Text] [Related]
10. The reference genome of Miscanthus floridulus illuminates the evolution of Saccharinae. Zhang G; Ge C; Xu P; Wang S; Cheng S; Han Y; Wang Y; Zhuang Y; Hou X; Yu T; Xu X; Deng S; Li Q; Yang Y; Yin X; Wang W; Liu W; Zheng C; Sun X; Wang Z; Ming R; Dong S; Ma J; Zhang X; Chen C Nat Plants; 2021 May; 7(5):608-618. PubMed ID: 33958777 [TBL] [Abstract][Full Text] [Related]
11. Graph-based mitochondrial genomes of three foundation species in the Saccharum genus. Li S; Wang Z; Jing Y; Duan W; Yang X Plant Cell Rep; 2024 Jul; 43(8):191. PubMed ID: 38977492 [TBL] [Abstract][Full Text] [Related]
12. Ribosomal DNA variations in Erianthus, a wild sugarcane relative (Andropogoneae-Saccharinae). Besse P; McIntyre CL; Berding N Theor Appl Genet; 1996 May; 92(6):733-43. PubMed ID: 24166398 [TBL] [Abstract][Full Text] [Related]
13. Unveiling the transcriptomic complexity of Miscanthus sinensis using a combination of PacBio long read- and Illumina short read sequencing platforms. Wang Y; Li X; Wang C; Gao L; Wu Y; Ni X; Sun J; Jiang J BMC Genomics; 2021 Sep; 22(1):690. PubMed ID: 34551715 [TBL] [Abstract][Full Text] [Related]
14. Chromosomal Characterization of Yu F; Chai J; Li X; Yu Z; Yang R; Ding X; Wang Q; Wu J; Yang X; Deng Z Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445245 [TBL] [Abstract][Full Text] [Related]
15. Assessing the Likelihood of Gene Flow From Sugarcane ( Snyman SJ; Komape DM; Khanyi H; van den Berg J; Cilliers D; Lloyd Evans D; Barnard S; Siebert SJ Front Bioeng Biotechnol; 2018; 6():72. PubMed ID: 29930938 [TBL] [Abstract][Full Text] [Related]
17. Mining sequence variations in representative polyploid sugarcane germplasm accessions. Yang X; Song J; You Q; Paudel DR; Zhang J; Wang J BMC Genomics; 2017 Aug; 18(1):594. PubMed ID: 28793856 [TBL] [Abstract][Full Text] [Related]
18. A chromosome-level genome assembly for Erianthus fulvus provides insights into its biofuel potential and facilitates breeding for improvement of sugarcane. Kui L; Majeed A; Wang X; Yang Z; Chen J; He L; Di Y; Li X; Qian Z; Jiao Y; Wang G; Liu L; Xu R; Gu S; Yang Q; Chen S; Lou H; Meng Y; Xie L; Xu F; Shen Q; Singh A; Gruber K; Pan Y; Hao T; Dong Y; Li F Plant Commun; 2023 Jul; 4(4):100562. PubMed ID: 36814384 [TBL] [Abstract][Full Text] [Related]
19. Natural Allelic Variations in Highly Polyploidy Saccharum Complex. Song J; Yang X; Resende MF; Neves LG; Todd J; Zhang J; Comstock JC; Wang J Front Plant Sci; 2016; 7():804. PubMed ID: 27375658 [TBL] [Abstract][Full Text] [Related]
20. Incidence, Geographical Distribution, and Genetic Diversity of Sugarcane Striate Virus in Lin Y; Ali N; Hajimorad MR; Zhang L; Qi X; Zhou L; Wen R; Chen B Plant Dis; 2021 Nov; 105(11):3531-3537. PubMed ID: 34042497 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]