These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 39101952)
41. Characterization of Two Novel Shu C; Yan G; Huang S; Geng Y; Soberón M; Bravo A; Geng L; Zhang J Toxins (Basel); 2020 Oct; 12(10):. PubMed ID: 33027918 [TBL] [Abstract][Full Text] [Related]
42. Larvicidal activities against agricultural pests of transgenic Escherichia coli expressing combinations of four genes from Bacillus thuringiensis. Khasdan V; Sapojnik M; Zaritsky A; Horowitz AR; Boussiba S; Rippa M; Manasherob R; Ben-Dov E Arch Microbiol; 2007 Dec; 188(6):643-53. PubMed ID: 17665174 [TBL] [Abstract][Full Text] [Related]
43. New Bacillus thuringiensis toxin combinations for biological control of lepidopteran larvae. Elleuch J; Zghal RZ; Jemaà M; Azzouz H; Tounsi S; Jaoua S Int J Biol Macromol; 2014 Apr; 65():148-54. PubMed ID: 24444881 [TBL] [Abstract][Full Text] [Related]
44. Recombinant Deng S-Q; Li N; Yang X-K; Lu H-Z; Liu J-H; Peng Z-Y; Wang L-M; Zhang M; Zhang C; Chen C Microbiol Spectr; 2024 Jul; 12(7):e0379223. PubMed ID: 38809029 [TBL] [Abstract][Full Text] [Related]
45. Identification of a biomarker for Bacillus thuringiensis strains with high toxicity against Spodoptera frugiperda based on insecticidal gene linkage analysis. Xu G; Wang Z; Bai Y; Crickmore N; Wang K; Hassen AI; Geng L; Shu C; Zhang J Pest Manag Sci; 2024 Oct; 80(10):5473-5480. PubMed ID: 38940437 [TBL] [Abstract][Full Text] [Related]
46. Insect pathogens as biological control agents: Back to the future. Lacey LA; Grzywacz D; Shapiro-Ilan DI; Frutos R; Brownbridge M; Goettel MS J Invertebr Pathol; 2015 Nov; 132():1-41. PubMed ID: 26225455 [TBL] [Abstract][Full Text] [Related]
47. PCR-based method for the detection of cry genes in local isolates of Bacillus thuringiensis from Thailand. Thammasittirong A; Attathom T J Invertebr Pathol; 2008 Jun; 98(2):121-6. PubMed ID: 18407288 [TBL] [Abstract][Full Text] [Related]
48. Insecticidal Activity of Domínguez-Arrizabalaga M; Villanueva M; Escriche B; Ancín-Azpilicueta C; Caballero P Toxins (Basel); 2020 Jun; 12(7):. PubMed ID: 32610662 [No Abstract] [Full Text] [Related]
49. Extended screening by PCR for seven cry-group genes from field-collected strains of Bacillus thuringiensis. Ben-Dov E; Zaritsky A; Dahan E; Barak Z; Sinai R; Manasherob R; Khamraev A; Troitskaya E; Dubitsky A; Berezina N; Margalith Y Appl Environ Microbiol; 1997 Dec; 63(12):4883-90. PubMed ID: 9406409 [TBL] [Abstract][Full Text] [Related]
50. Molecular characterization and genetic diversity of insecticidal crystal protein genes in native Bacillus thuringiensis isolates. Mahadeva Swamy HM; Asokan R; Mahmood R; Nagesha SN Curr Microbiol; 2013 Apr; 66(4):323-30. PubMed ID: 23207696 [TBL] [Abstract][Full Text] [Related]
52. Identification of Bacillus thuringiensis Strains for the Management of Lepidopteran Pests. Pinheiro DH; Valicente FH Neotrop Entomol; 2021 Oct; 50(5):804-811. PubMed ID: 34398398 [TBL] [Abstract][Full Text] [Related]
53. Enhancement of Bacillus thuringiensis Cry1Ab and Cry1Fa Toxicity to Spodoptera frugiperda by Domain III Mutations Indicates There Are Two Limiting Steps in Toxicity as Defined by Receptor Binding and Protein Stability. Gómez I; Ocelotl J; Sánchez J; Lima C; Martins E; Rosales-Juárez A; Aguilar-Medel S; Abad A; Dong H; Monnerat R; Peña G; Zhang J; Nelson M; Wu G; Bravo A; Soberón M Appl Environ Microbiol; 2018 Oct; 84(20):. PubMed ID: 30097439 [No Abstract] [Full Text] [Related]
54. Bacillus thuringiensis bel protein enhances the toxicity of Cry1Ac protein to Helicoverpa armigera larvae by degrading insect intestinal mucin. Fang S; Wang L; Guo W; Zhang X; Peng D; Luo C; Yu Z; Sun M Appl Environ Microbiol; 2009 Aug; 75(16):5237-43. PubMed ID: 19542344 [TBL] [Abstract][Full Text] [Related]
55. A novel anti-dipteran Fayad N; Kambris Z; El Chamy L; Mahillon J; Kallassy Awad M Appl Environ Microbiol; 2021 Mar; 87(5):. PubMed ID: 33310715 [No Abstract] [Full Text] [Related]
56. Cry64Ba and Cry64Ca, Two ETX/MTX2-Type Bacillus thuringiensis Insecticidal Proteins Active against Hemipteran Pests. Liu Y; Wang Y; Shu C; Lin K; Song F; Bravo A; Soberón M; Zhang J Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150505 [TBL] [Abstract][Full Text] [Related]
57. Identification and characterization of a previously undescribed cyt gene in Bacillus thuringiensis subsp. israelensis. Guerchicoff A; Ugalde RA; Rubinstein CP Appl Environ Microbiol; 1997 Jul; 63(7):2716-21. PubMed ID: 9212418 [TBL] [Abstract][Full Text] [Related]
58. Pulsed field gel electrophoresis of chromosomal DNA reveals a clonal population structure to Bacillus thuringiensis that relates in general to crystal protein gene content. Gaviria Rivera AM; Priest FG FEMS Microbiol Lett; 2003 Jun; 223(1):61-6. PubMed ID: 12799001 [TBL] [Abstract][Full Text] [Related]
59. Bacterial communities in the gut of wild and mass-reared Zeugodacus cucurbitae and Bactrocera dorsalis revealed by metagenomic sequencing. Hadapad AB; Shettigar SKG; Hire RS BMC Microbiol; 2019 Dec; 19(Suppl 1):282. PubMed ID: 31870295 [TBL] [Abstract][Full Text] [Related]
60. Dynamics of Bacillus thuringiensis var. israelensis and Lysinibacillus sphaericus spores in urban catch basins after simultaneous application against mosquito larvae. Guidi V; Lehner A; Lüthy P; Tonolla M PLoS One; 2013; 8(2):e55658. PubMed ID: 23390547 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]