These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 39102325)
1. Automated Hand Prehension Assessment From Egocentric Video After Spinal Cord Injury. Zhao N; Zariffa J IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2864-2872. PubMed ID: 39102325 [TBL] [Abstract][Full Text] [Related]
2. Views of individuals with spinal cord injury on the use of wearable cameras to monitor upper limb function in the home and community. Likitlersuang J; Sumitro ER; Theventhiran P; Kalsi-Ryan S; Zariffa J J Spinal Cord Med; 2017 Nov; 40(6):706-714. PubMed ID: 28738759 [TBL] [Abstract][Full Text] [Related]
3. Interaction Detection in Egocentric Video: Toward a Novel Outcome Measure for Upper Extremity Function. Likitlersuang J; Zariffa J IEEE J Biomed Health Inform; 2018 Mar; 22(2):561-569. PubMed ID: 28114045 [TBL] [Abstract][Full Text] [Related]
4. Egocentric video: a new tool for capturing hand use of individuals with spinal cord injury at home. Likitlersuang J; Sumitro ER; Cao T; Visée RJ; Kalsi-Ryan S; Zariffa J J Neuroeng Rehabil; 2019 Jul; 16(1):83. PubMed ID: 31277682 [TBL] [Abstract][Full Text] [Related]
5. Measuring Hand Use in the Home after Cervical Spinal Cord Injury Using Egocentric Video. Bandini A; Dousty M; Hitzig SL; Craven BC; Kalsi-Ryan S; Zariffa J J Neurotrauma; 2022 Dec; 39(23-24):1697-1707. PubMed ID: 35747948 [TBL] [Abstract][Full Text] [Related]
6. Grasp Analysis in the Home Environment as a Measure of Hand Function After Cervical Spinal Cord Injury. Dousty M; Bandini A; Eftekhar P; Fleet DJ; Zariffa J Neurorehabil Neural Repair; 2023 Jul; 37(7):466-474. PubMed ID: 37272451 [TBL] [Abstract][Full Text] [Related]
7. Tenodesis Grasp Detection in Egocentric Video. Dousty M; Zariffa J IEEE J Biomed Health Inform; 2021 May; 25(5):1463-1470. PubMed ID: 32750944 [TBL] [Abstract][Full Text] [Related]
8. Capturing Representative Hand Use at Home Using Egocentric Video in Individuals with Upper Limb Impairment. Tsai MF; Bandini A; Wang RH; Zariffa J J Vis Exp; 2020 Dec; (166):. PubMed ID: 33427235 [TBL] [Abstract][Full Text] [Related]
9. Capturing hand use of individuals with spinal cord injury at home using egocentric video: a feasibility study. Likitlersuang J; Visée RJ; Kalsi-Ryan S; Zariffa J Spinal Cord Ser Cases; 2021 Mar; 7(1):17. PubMed ID: 33674553 [TBL] [Abstract][Full Text] [Related]
10. An Effective and Efficient Method for Detecting Hands in Egocentric Videos for Rehabilitation Applications. Visee RJ; Likitlersuang J; Zariffa J IEEE Trans Neural Syst Rehabil Eng; 2020 Mar; 28(3):748-755. PubMed ID: 31985432 [TBL] [Abstract][Full Text] [Related]
11. Towards Clustering Hand Grasps of Individuals with Spinal Cord Injury in Egocentric Video. Dousty M; Zariffa J Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2151-2154. PubMed ID: 33018432 [TBL] [Abstract][Full Text] [Related]
12. Home-based rehabilitation using a soft robotic hand glove device leads to improvement in hand function in people with chronic spinal cord injury:a pilot study. Osuagwu BAC; Timms S; Peachment R; Dowie S; Thrussell H; Cross S; Shirley R; Segura-Fragoso A; Taylor J J Neuroeng Rehabil; 2020 Mar; 17(1):40. PubMed ID: 32138780 [TBL] [Abstract][Full Text] [Related]
13. Identifying Hand Use and Hand Roles After Stroke Using Egocentric Video. Tsai MF; Wang RH; Zariffa J IEEE J Transl Eng Health Med; 2021; 9():2100510. PubMed ID: 33889453 [TBL] [Abstract][Full Text] [Related]
14. Assisting hand function after spinal cord injury with a fabric-based soft robotic glove. Cappello L; Meyer JT; Galloway KC; Peisner JD; Granberry R; Wagner DA; Engelhardt S; Paganoni S; Walsh CJ J Neuroeng Rehabil; 2018 Jun; 15(1):59. PubMed ID: 29954401 [TBL] [Abstract][Full Text] [Related]
15. Predictive Value of Upper Limb Muscles and Grasp Patterns on Functional Outcome in Cervical Spinal Cord Injury. Velstra IM; Bolliger M; Krebs J; Rietman JS; Curt A Neurorehabil Neural Repair; 2016 May; 30(4):295-306. PubMed ID: 26156192 [TBL] [Abstract][Full Text] [Related]
16. A wearable vision-based system for detecting hand-object interactions in individuals with cervical spinal cord injury: First results in the home environment. Bandini A; Dousty M; Zariffa J Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2159-2162. PubMed ID: 33018434 [TBL] [Abstract][Full Text] [Related]
17. Generalizability of Hand-Object Interaction Detection in Egocentric Video across Populations with Hand Impairment. Tsai MF; Wang RH; Zariffa J Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3228-3231. PubMed ID: 33018692 [TBL] [Abstract][Full Text] [Related]
18. Predicting upper limb compensation during prehension tasks in tetraplegic spinal cord injured patients using a single wearable sensor. Schneider S; Popp WL; Brogioli M; Albisser U; Ortmann S; Velstra IM; Demko L; Gassert R; Curt A IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1000-1006. PubMed ID: 31374760 [TBL] [Abstract][Full Text] [Related]
19. Development of the Graded Redefined Assessment of Strength, Sensibility and Prehension (GRASSP): reviewing measurement specific to the upper limb in tetraplegia. Kalsi-Ryan S; Curt A; Verrier MC; Fehlings MG J Neurosurg Spine; 2012 Sep; 17(1 Suppl):65-76. PubMed ID: 22985372 [TBL] [Abstract][Full Text] [Related]
20. Relationship between clinical assessments of function and measurements from an upper-limb robotic rehabilitation device in cervical spinal cord injury. Zariffa J; Kapadia N; Kramer JL; Taylor P; Alizadeh-Meghrazi M; Zivanovic V; Albisser U; Willms R; Townson A; Curt A; Popovic MR; Steeves JD IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):341-50. PubMed ID: 22203726 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]