These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 39102403)
1. An optimal normalization method for high sparse compositional microbiome data. Sohn MB; Monaco C; Gill SR PLoS Comput Biol; 2024 Aug; 20(8):e1012338. PubMed ID: 39102403 [TBL] [Abstract][Full Text] [Related]
2. Analysis and correction of compositional bias in sparse sequencing count data. Kumar MS; Slud EV; Okrah K; Hicks SC; Hannenhalli S; Corrada Bravo H BMC Genomics; 2018 Nov; 19(1):799. PubMed ID: 30400812 [TBL] [Abstract][Full Text] [Related]
3. CCLasso: correlation inference for compositional data through Lasso. Fang H; Huang C; Zhao H; Deng M Bioinformatics; 2015 Oct; 31(19):3172-80. PubMed ID: 26048598 [TBL] [Abstract][Full Text] [Related]
4. A highly adaptive microbiome-based association test for survival traits. Koh H; Livanos AE; Blaser MJ; Li H BMC Genomics; 2018 Mar; 19(1):210. PubMed ID: 29558893 [TBL] [Abstract][Full Text] [Related]
5. Direct interaction network inference for compositional data via codaloss. Chen L; He S; Zhai Y; Deng M J Bioinform Comput Biol; 2020 Dec; 18(6):2050037. PubMed ID: 33106076 [TBL] [Abstract][Full Text] [Related]
6. MIDASim: a fast and simple simulator for realistic microbiome data. He M; Zhao N; Satten GA Microbiome; 2024 Jul; 12(1):135. PubMed ID: 39039570 [TBL] [Abstract][Full Text] [Related]
7. A robust two-way semi-linear model for normalization of cDNA microarray data. Wang D; Huang J; Xie H; Manzella L; Soares MB BMC Bioinformatics; 2005 Jan; 6():14. PubMed ID: 15663789 [TBL] [Abstract][Full Text] [Related]
8. A broken promise: microbiome differential abundance methods do not control the false discovery rate. Hawinkel S; Mattiello F; Bijnens L; Thas O Brief Bioinform; 2019 Jan; 20(1):210-221. PubMed ID: 28968702 [TBL] [Abstract][Full Text] [Related]
9. An empirical Bayes approach to normalization and differential abundance testing for microbiome data. Liu T; Zhao H; Wang T BMC Bioinformatics; 2020 Jun; 21(1):225. PubMed ID: 32493208 [TBL] [Abstract][Full Text] [Related]
10. A general framework for association analysis of microbial communities on a taxonomic tree. Tang ZZ; Chen G; Alekseyenko AV; Li H Bioinformatics; 2017 May; 33(9):1278-1285. PubMed ID: 28003264 [TBL] [Abstract][Full Text] [Related]
11. A compositional mediation model for a binary outcome: Application to microbiome studies. Sohn MB; Lu J; Li H Bioinformatics; 2021 Dec; 38(1):16-21. PubMed ID: 34415327 [TBL] [Abstract][Full Text] [Related]
12. gmcoda: Graphical model for multiple compositional vectors in microbiome studies. Fang H Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37975866 [TBL] [Abstract][Full Text] [Related]
13. Compositional zero-inflated network estimation for microbiome data. Ha MJ; Kim J; Galloway-Peña J; Do KA; Peterson CB BMC Bioinformatics; 2020 Dec; 21(Suppl 21):581. PubMed ID: 33371887 [TBL] [Abstract][Full Text] [Related]
15. A maximum-type microbial differential abundance test with application to high-dimensional microbiome data analyses. Li Z; Yu X; Guo H; Lee T; Hu J Front Cell Infect Microbiol; 2022; 12():988717. PubMed ID: 36389165 [TBL] [Abstract][Full Text] [Related]