These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 39102857)

  • 1. Vibronics of multi-material nanopillared membranes and impact on the thermal conductivity.
    Yang L; Hussein MI
    J Phys Condens Matter; 2024 Sep; 36(50):. PubMed ID: 39102857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semiconductor Thermal and Electrical Properties Decoupled by Localized Phonon Resonances.
    Spann BT; Weber JC; Brubaker MD; Harvey TE; Yang L; Honarvar H; Tsai CN; Treglia AC; Lee M; Hussein MI; Bertness KA
    Adv Mater; 2023 Jun; 35(26):e2209779. PubMed ID: 36951229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of nanopillars on phonon dispersion and thermal conductivity of silicon membranes.
    Anufriev R; Ohori D; Wu Y; Yanagisawa R; Jalabert L; Samukawa S; Nomura M
    Nanoscale; 2023 Feb; 15(5):2248-2253. PubMed ID: 36628951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coherent and Incoherent Impacts of Nanopillars on the Thermal Conductivity in Silicon Nanomembranes.
    Huang X; Ohori D; Yanagisawa R; Anufriev R; Samukawa S; Nomura M
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):25478-25483. PubMed ID: 32369329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanophononic metamaterial: thermal conductivity reduction by local resonance.
    Davis BL; Hussein MI
    Phys Rev Lett; 2014 Feb; 112(5):055505. PubMed ID: 24580612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics study on the contribution of anisotropic phonon transmission to thermal conductivity of silicon.
    Cheng C; Wang S
    J Phys Condens Matter; 2022 Sep; 34(43):. PubMed ID: 35995038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aluminium nanopillars reduce thermal conductivity of silicon nanobeams.
    Anufriev R; Yanagisawa R; Nomura M
    Nanoscale; 2017 Oct; 9(39):15083-15088. PubMed ID: 28967655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning thermal transport in ultrathin silicon membranes by surface nanoscale engineering.
    Neogi S; Reparaz JS; Pereira LF; Graczykowski B; Wagner MR; Sledzinska M; Shchepetov A; Prunnila M; Ahopelto J; Sotomayor-Torres CM; Donadio D
    ACS Nano; 2015 Apr; 9(4):3820-8. PubMed ID: 25827287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blocking Phonon Transport by Structural Resonances in Alloy-Based Nanophononic Metamaterials Leads to Ultralow Thermal Conductivity.
    Xiong S; Sääskilahti K; Kosevich YA; Han H; Donadio D; Volz S
    Phys Rev Lett; 2016 Jul; 117(2):025503. PubMed ID: 27447516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning the Anisotropic Thermal Transport in {110}-Silicon Membranes with Surface Resonances.
    Li K; Cheng Y; Dou M; Zeng W; Volz S; Xiong S
    Nanomaterials (Basel); 2021 Dec; 12(1):. PubMed ID: 35010074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance.
    Regner KT; Sellan DP; Su Z; Amon CH; McGaughey AJ; Malen JA
    Nat Commun; 2013; 4():1640. PubMed ID: 23535661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of thermal conductivity in kinked silicon nanowires: phonon interchanging and pinching effects.
    Jiang JW; Yang N; Wang BS; Rabczuk T
    Nano Lett; 2013 Apr; 13(4):1670-4. PubMed ID: 23517486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bilateral substrate effect on the thermal conductivity of two-dimensional silicon.
    Zhang X; Bao H; Hu M
    Nanoscale; 2015 Apr; 7(14):6014-22. PubMed ID: 25762032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of the electron-phonon coupling on the thermal conductivity of silicon nanowires.
    Wan W; Xiong B; Zhang W; Feng J; Wang E
    J Phys Condens Matter; 2012 Jul; 24(29):295402. PubMed ID: 22728956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal conductivity anisotropy in holey silicon nanostructures and its impact on thermoelectric cooling.
    Ren Z; Lee J
    Nanotechnology; 2018 Jan; 29(4):045404. PubMed ID: 29199973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Reduction of Thermal Conductivity in Amorphous Silicon Nitride-Containing Phononic Crystals Fabricated Using Directed Self-Assembly of Block Copolymers.
    Zhou C; Tambo N; Ashley EM; Liao Y; Shiomi J; Takahashi K; Craig GSW; Nealey PF
    ACS Nano; 2020 Jun; 14(6):6980-6989. PubMed ID: 32459464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of phonon coherence and backscattering using silicon nanomeshes.
    Lee J; Lee W; Wehmeyer G; Dhuey S; Olynick DL; Cabrini S; Dames C; Urban JJ; Yang P
    Nat Commun; 2017 Jan; 8():14054. PubMed ID: 28051081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phonon transport and thermal conductivity of diamond superlattice nanowires: a comparative study with SiGe superlattice nanowires.
    Qu X; Gu J
    RSC Adv; 2020 Jan; 10(3):1243-1248. PubMed ID: 35494690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing Thermal Transport in Layered Nanomaterials.
    Malhotra A; Kothari K; Maldovan M
    Sci Rep; 2018 Jan; 8(1):1880. PubMed ID: 29382869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phonon-interface scattering in multilayer graphene on an amorphous support.
    Sadeghi MM; Jo I; Shi L
    Proc Natl Acad Sci U S A; 2013 Oct; 110(41):16321-6. PubMed ID: 24067656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.