These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 39102857)

  • 21. Effects of quantum statistics of phonons on the thermal conductivity of silicon and germanium nanoribbons.
    Kosevich YA; Savin AV; Cantarero A
    Nanoscale Res Lett; 2013 Jan; 8(1):7. PubMed ID: 23281873
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High In-Plane Thermal Conductivity of Aluminum Nitride Thin Films.
    Hoque MSB; Koh YR; Braun JL; Mamun A; Liu Z; Huynh K; Liao ME; Hussain K; Cheng Z; Hoglund ER; Olson DH; Tomko JA; Aryana K; Galib R; Gaskins JT; Elahi MMM; Leseman ZC; Howe JM; Luo T; Graham S; Goorsky MS; Khan A; Hopkins PE
    ACS Nano; 2021 Jun; 15(6):9588-9599. PubMed ID: 33908771
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tailoring thermal transport and confinement effect of GaN/Si
    Yang Y; Yuan K; Wang Z
    J Phys Condens Matter; 2024 Sep; 36(50):. PubMed ID: 39208841
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Strong reduction of thermal conductivity of WSe
    Wang B; Yan X; Yan H; Cai Y
    Nanotechnology; 2022 Apr; 33(27):. PubMed ID: 35349994
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tuning the lattice thermal conductivity of Sb
    Zhang P; Liao W; Zhu Z; Qin M; Zhang Z; Jin D; Liu Y; Wang Z; Lu Z; Xiong R
    Phys Chem Chem Phys; 2023 Jun; 25(22):15422-15432. PubMed ID: 37248727
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phonon localization and resonance in thermal transport of pillar-based GaAs nanowires.
    Chen J; Hou Z; Chen H; Wang Z
    J Phys Condens Matter; 2022 Sep; 34(44):. PubMed ID: 35995045
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermal Conductivity of Wurtzite Zinc-Oxide from First-Principles Lattice Dynamics--a Comparative Study with Gallium Nitride.
    Wu X; Lee J; Varshney V; Wohlwend JL; Roy AK; Luo T
    Sci Rep; 2016 Mar; 6():22504. PubMed ID: 26928396
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting the Lattice Thermal Conductivity in Nitride Perovskite LaWN
    Tong Z; Zhang Y; Pecchia A; Yam C; Zhou L; Dumitrică T; Frauenheim T
    Adv Sci (Weinh); 2023 Mar; 10(9):e2205934. PubMed ID: 36683244
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lifetimes of confined acoustic phonons in ultrathin silicon membranes.
    Cuffe J; Ristow O; Chávez E; Shchepetov A; Chapuis PO; Alzina F; Hettich M; Prunnila M; Ahopelto J; Dekorsy T; Sotomayor Torres CM
    Phys Rev Lett; 2013 Mar; 110(9):095503. PubMed ID: 23496722
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanostructure design for drastic reduction of thermal conductivity while preserving high electrical conductivity.
    Nakamura Y
    Sci Technol Adv Mater; 2018; 19(1):31-43. PubMed ID: 29371907
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermal conductivity in disordered porous nanomembranes.
    Sledzinska M; Graczykowski B; Alzina F; Melia U; Termentzidis K; Lacroix D; Sotomayor Torres CM
    Nanotechnology; 2019 Jun; 30(26):265401. PubMed ID: 30861500
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anisotropic intrinsic lattice thermal conductivity of borophane from first-principles calculations.
    Liu G; Wang H; Gao Y; Zhou J; Wang H
    Phys Chem Chem Phys; 2017 Jan; 19(4):2843-2849. PubMed ID: 28067931
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultralow Lattice Thermal Conductivity of the Random Multilayer Structure with Lattice Imperfections.
    Chakraborty P; Cao L; Wang Y
    Sci Rep; 2017 Aug; 7(1):8134. PubMed ID: 28811540
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ballistic phonon transport in holey silicon.
    Lee J; Lim J; Yang P
    Nano Lett; 2015 May; 15(5):3273-9. PubMed ID: 25861026
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct measurement of room-temperature nondiffusive thermal transport over micron distances in a silicon membrane.
    Johnson JA; Maznev AA; Cuffe J; Eliason JK; Minnich AJ; Kehoe T; Torres CM; Chen G; Nelson KA
    Phys Rev Lett; 2013 Jan; 110(2):025901. PubMed ID: 23383915
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparison of molecular dynamics potentials used to account for thermal diffuse scattering in multislice simulations.
    Chen X; Kim DS; LeBeau JM
    Ultramicroscopy; 2023 Feb; 244():113644. PubMed ID: 36410085
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electric field tuned anisotropic to isotropic thermal transport transition in monolayer borophene without altering its atomic structure.
    Yang Z; Yuan K; Meng J; Hu M
    Nanoscale; 2020 Oct; 12(37):19178-19190. PubMed ID: 32926048
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anisotropy Reversal of Thermal Conductivity in Silicon Nanowire Networks Driven by Quasi-Ballistic Phonon Transport.
    Kim B; Barbier-Chebbah F; Ogawara Y; Jalabert L; Yanagisawa R; Anufriev R; Nomura M
    ACS Nano; 2024 Apr; 18(15):10557-10565. PubMed ID: 38575375
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hidden structures: a driving factor to achieve low thermal conductivity and high thermoelectric performance.
    Sarkar D; Bhui A; Maria I; Dutta M; Biswas K
    Chem Soc Rev; 2024 Jun; 53(12):6100-6149. PubMed ID: 38717749
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced thermal conduction by surface phonon-polaritons.
    Wu Y; Ordonez-Miranda J; Gluchko S; Anufriev R; Meneses DS; Del Campo L; Volz S; Nomura M
    Sci Adv; 2020 Sep; 6(40):. PubMed ID: 32998899
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.