These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 39102857)

  • 41. Modulating Thermal Conductivity via Targeted Phonon Excitation.
    Wan X; Pan D; Zong Z; Qin Y; Lü JT; Volz S; Zhang L; Yang N
    Nano Lett; 2024 Jun; 24(23):6889-6896. PubMed ID: 38739156
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Super-Suppression of Long-Wavelength Phonons in Constricted Nanoporous Geometries.
    Greaney PA; Hosseini SA; de Sousa Oliveira L; Davies A; Neophytou N
    Nanomaterials (Basel); 2024 May; 14(9):. PubMed ID: 38727389
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tuning phonon transport spectrum for better thermoelectric materials.
    Hori T; Shiomi J
    Sci Technol Adv Mater; 2019; 20(1):10-25. PubMed ID: 31001366
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride.
    Jo I; Pettes MT; Kim J; Watanabe K; Taniguchi T; Yao Z; Shi L
    Nano Lett; 2013 Feb; 13(2):550-4. PubMed ID: 23346863
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Thermal conductivity reduction of crystalline silicon by high-pressure torsion.
    Harish S; Tabara M; Ikoma Y; Horita Z; Takata Y; Cahill DG; Kohno M
    Nanoscale Res Lett; 2014; 9(1):326. PubMed ID: 25024687
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Atomic-Scale Surface Engineering for Giant Thermal Transport Enhancement Across 2D/3D van der Waals Interfaces.
    Wang Q; Zhang J; Xiong Y; Li S; Chernysh V; Liu X
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):3377-3386. PubMed ID: 36608269
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Heat flux concentrator based on nanophononic metamaterials.
    Zhang J; Zhang H; Zhang G
    iScience; 2024 Sep; 27(9):110815. PubMed ID: 39310773
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Significantly suppressed thermal transport by doping In and Al atoms in gallium nitride.
    Qi C; Yu L; Zhu X; Li S; Du K; Qin Z; Qin G; Xiong Z
    Phys Chem Chem Phys; 2022 Sep; 24(35):21085-21093. PubMed ID: 36017798
    [TBL] [Abstract][Full Text] [Related]  

  • 49. External electric field driving the ultra-low thermal conductivity of silicene.
    Qin G; Qin Z; Yue SY; Yan QB; Hu M
    Nanoscale; 2017 Jun; 9(21):7227-7234. PubMed ID: 28513696
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Thermal Transport Properties of Diamond Phonons by Electric Field.
    Zhao Y; Yan F; Liu X; Ma H; Zhang Z; Jiao A
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234524
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanical and thermal characterizations of nanoporous two-dimensional boron nitride membranes.
    Pham VT; Fang TH
    Sci Rep; 2022 Apr; 12(1):6306. PubMed ID: 35428858
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Thermal conductivity and air-mediated losses in periodic porous silicon membranes at high temperatures.
    Graczykowski B; El Sachat A; Reparaz JS; Sledzinska M; Wagner MR; Chavez-Angel E; Wu Y; Volz S; Wu Y; Alzina F; Sotomayor Torres CM
    Nat Commun; 2017 Sep; 8(1):415. PubMed ID: 28871197
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Thermal conductivity of silicon and carbon hybrid monolayers: a molecular dynamics study.
    Wang L; Sun H
    J Mol Model; 2012 Nov; 18(11):4811-8. PubMed ID: 22699704
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Thermal Transport in Silicon Nanowires at High Temperature up to 700 K.
    Lee J; Lee W; Lim J; Yu Y; Kong Q; Urban JJ; Yang P
    Nano Lett; 2016 Jul; 16(7):4133-40. PubMed ID: 27243378
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Lattice thermal conductivity of embedded nanoparticle composites: the role of particle size distribution.
    Maranets T; Cui H; Wang Y
    Nanotechnology; 2023 Nov; 35(5):. PubMed ID: 37965950
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Thickness-Dependent Cross-Plane Thermal Conductivity Measurements of Exfoliated Hexagonal Boron Nitride.
    Jaffe GR; Smith KJ; Watanabe K; Taniguchi T; Lagally MG; Eriksson MA; Brar VW
    ACS Appl Mater Interfaces; 2023 Mar; 15(9):12545-12550. PubMed ID: 36848224
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Manipulation of Phonon Transport in Thermoelectrics.
    Chen Z; Zhang X; Pei Y
    Adv Mater; 2018 Apr; 30(17):e1705617. PubMed ID: 29399915
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Machine learning interatomic potential developed for molecular simulations on thermal properties of β-Ga
    Liu YB; Yang JY; Xin GM; Liu LH; Csányi G; Cao BY
    J Chem Phys; 2020 Oct; 153(14):144501. PubMed ID: 33086840
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ultrahigh lattice thermal conductivity in topological semimetal TaN caused by a large acoustic-optical gap.
    Guo SD; Liu BG
    J Phys Condens Matter; 2018 Mar; 30(10):105701. PubMed ID: 29376833
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reduced Thermal Transport in the Graphene/MoS
    Srinivasan S; Balasubramanian G
    Langmuir; 2018 Mar; 34(10):3326-3335. PubMed ID: 29429341
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.