These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 39103296)
1. Copper(II)-Tannic Acid@Cu with In Situ Grown Gold Nanoparticles as a Bifunctional Matrix for Facile Construction of Label-Free and Ultrasensitive Electrochemical cTnI Immunosensor. Liu X; Yang H; Ni J; Zheng X; Song Z; Gao F; Wang Q ACS Appl Bio Mater; 2024 Aug; 7(8):5258-5267. PubMed ID: 39103296 [TBL] [Abstract][Full Text] [Related]
2. Label-Free Immunosensor Based on Liquid Crystal and Gold Nanoparticles for Cardiac Troponin I Detection. Zapp E; Brondani D; Silva TR; Girotto E; Gallardo H; Vieira IC Biosensors (Basel); 2022 Dec; 12(12):. PubMed ID: 36551080 [TBL] [Abstract][Full Text] [Related]
3. Fouling-Free electrochemical strategy based on vertically-aligned peptide layer for cardiac troponin I sensitive detection in human serum. Qin X; Zhu X; Wang Y Anal Chim Acta; 2024 Aug; 1317():342866. PubMed ID: 39030026 [TBL] [Abstract][Full Text] [Related]
4. Electrochemiluminescence Immunosensor Based on Au Nanocluster and Hybridization Chain Reaction Signal Amplification for Ultrasensitive Detection of Cardiac Troponin I. Zhu L; Ye J; Yan M; Zhu Q; Wang S; Huang J; Yang X ACS Sens; 2019 Oct; 4(10):2778-2785. PubMed ID: 31571481 [TBL] [Abstract][Full Text] [Related]
5. Electrochemiluminescent Detection of Proteins Based on Fullerenols Modified Gold Nanoparticles and Triple Amplification Approaches. Dong Y; Qin X; Wang M; Gu C; Zhu Z; Yang D; Shao Y Anal Chem; 2020 Jan; 92(2):1890-1897. PubMed ID: 31920079 [TBL] [Abstract][Full Text] [Related]
6. Electrochemical immunosensor for highly sensitive detection of cTnI via in-situ initiated ROP signal amplification strategy. Cheng D; Zhou Z; Shang S; Wang H; Guan H; Yang H; Liu Y Anal Chim Acta; 2022 Aug; 1219():340032. PubMed ID: 35715132 [TBL] [Abstract][Full Text] [Related]
7. Reduced graphene oxide-gold nanoparticles-catalase-based dual signal amplification strategy in a spatial-resolved ratiometric electrochemiluminescence immunoassay. Cao JT; Fu XL; Liu FR; Ren SW; Liu YM Analyst; 2019 Dec; 145(1):91-96. PubMed ID: 31742265 [TBL] [Abstract][Full Text] [Related]
8. Nanocomposites of gold nanoparticles and graphene oxide towards an stable label-free electrochemical immunosensor for detection of cardiac marker troponin-I. Liu G; Qi M; Zhang Y; Cao C; Goldys EM Anal Chim Acta; 2016 Feb; 909():1-8. PubMed ID: 26851079 [TBL] [Abstract][Full Text] [Related]
9. An ultrasensitive electrochemical immunosensor based on meso-PdN NCs and Au NPs/N-CNTs for quantitative cTnI detection. Wang S; Tang F; Xing S; Xiang S; Dou S; Li Y; Liu Q; Wang P; Li Y; Feng K; Wang S Bioelectrochemistry; 2024 Aug; 158():108680. PubMed ID: 38493575 [TBL] [Abstract][Full Text] [Related]
10. A sensitive electrochemical immunosensor based on high-efficiency catalytic cycle amplification strategy for detection of cardiac troponin I. Jiang F; Meng Y; Mo M; Li Y; Liu Q; Wang P; Li Y; Wei Q Bioelectrochemistry; 2024 Oct; 159():108730. PubMed ID: 38762950 [TBL] [Abstract][Full Text] [Related]
11. A novel integrated lateral flow immunoassay platform for the detection of cardiac troponin I using hierarchical dendritic copper-nickel nanostructures. Tan Y; Zhang S; Liu Y; Li J; Zhang S; Pan H Talanta; 2024 Sep; 277():126332. PubMed ID: 38823322 [TBL] [Abstract][Full Text] [Related]
12. Electrochemical immunosensor for determination of cardiac troponin I using two-dimensional metal-organic framework/Fe Ahmadi A; Khoshfetrat SM; Mirzaeizadeh Z; Kabiri S; Rezaie J; Omidfar K Talanta; 2022 Jan; 237():122911. PubMed ID: 34736648 [TBL] [Abstract][Full Text] [Related]
13. Electrochemical immunosensor based on Au/Co-BDC/MoS Zhao H; Du X; Dong H; Jin D; Tang F; Liu Q; Wang P; Chen L; Zhao P; Li Y Biosens Bioelectron; 2021 Mar; 175():112883. PubMed ID: 33341318 [TBL] [Abstract][Full Text] [Related]
14. Ultrasensitive photoelectrochemical immunosensor of cardiac troponin I detection based on dual inhibition effect of Ag@Cu Chen J; Kong L; Sun X; Feng J; Chen Z; Fan D; Wei Q Biosens Bioelectron; 2018 Oct; 117():340-346. PubMed ID: 29935487 [TBL] [Abstract][Full Text] [Related]
15. Facile and clean synthesis of dihydroxylatopillar[5]arene-stabilized gold nanoparticles integrated Pd/MnO Qian X; Zhou X; Ran X; Ni H; Li Z; Qu Q; Li J; Du G; Yang L Biosens Bioelectron; 2019 Apr; 130():214-224. PubMed ID: 30745283 [TBL] [Abstract][Full Text] [Related]
16. Label-free electrochemiluminescence immunosensor for cardiac troponin I using luminol functionalized gold nanoparticles as a sensing platform. Li F; Yu Y; Cui H; Yang D; Bian Z Analyst; 2013 Mar; 138(6):1844-50. PubMed ID: 23377497 [TBL] [Abstract][Full Text] [Related]
17. CTnI diagnosis in myocardial infarction using G-quadruplex selective Ir(Ⅲ) complex as effective electrochemiluminescence probe. Wu S; Zou S; Wang S; Li Z; Ma DL; Miao X Talanta; 2022 Oct; 248():123622. PubMed ID: 35687951 [TBL] [Abstract][Full Text] [Related]
19. An electrochemical sandwich immunosensor for cardiac troponin I by using nitrogen/sulfur co-doped graphene oxide modified with Au@Ag nanocubes as amplifiers. Lv H; Zhang X; Li Y; Ren Y; Zhang C; Wang P; Xu Z; Li X; Chen Z; Dong Y Mikrochim Acta; 2019 Jun; 186(7):416. PubMed ID: 31187243 [TBL] [Abstract][Full Text] [Related]
20. Enhanced photoelectrochemical immunosensing of cardiac troponin I based on energy transfer between N-acetyl-L-cysteine capped CdAgTe quantum dots and dodecahedral Au nanoparticles. Tan Y; Wang Y; Li M; Ye X; Wu T; Li C Biosens Bioelectron; 2017 May; 91():741-746. PubMed ID: 28130994 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]