These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 39103701)
1. Novel differential scanning calorimetry (DSC) application to select polyhydroxyalkanoate (PHA) producers correlating 3-hydroxyhexanoate (3-HHx) monomer with melting enthalpy. Jung HJ; Kim B; Choi TR; Oh SJ; Kim S; Lee Y; Shin Y; Choi S; Oh J; Park SY; Lee YS; Choi YH; Yang YH Bioprocess Biosyst Eng; 2024 Oct; 47(10):1619-1631. PubMed ID: 39103701 [TBL] [Abstract][Full Text] [Related]
2. Maximization of 3-hydroxyhexanoate fraction in poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) using lauric acid with engineered Cupriavidus necator H16. Oh SJ; Choi TR; Kim HJ; Shin N; Hwang JH; Kim HJ; Bhatia SK; Kim W; Yeon YJ; Yang YH Int J Biol Macromol; 2024 Jan; 256(Pt 2):128376. PubMed ID: 38007029 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of BP-M-CPF4 polyhydroxyalkanoate (PHA) synthase on the production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from plant oil using Cupriavidus necator transformants. Tan HT; Chek MF; Lakshmanan M; Foong CP; Hakoshima T; Sudesh K Int J Biol Macromol; 2020 Sep; 159():250-257. PubMed ID: 32417540 [TBL] [Abstract][Full Text] [Related]
4. Biosynthesis and characterization of polyhydroxyalkanoate containing high 3-hydroxyhexanoate monomer fraction from crude palm kernel oil by recombinant Cupriavidus necator. Wong YM; Brigham CJ; Rha C; Sinskey AJ; Sudesh K Bioresour Technol; 2012 Oct; 121():320-7. PubMed ID: 22858502 [TBL] [Abstract][Full Text] [Related]
6. Combining molecular and bioprocess techniques to produce poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with controlled monomer composition by Burkholderia sacchari. Mendonça TT; Tavares RR; Cespedes LG; Sánchez-Rodriguez RJ; Schripsema J; Taciro MK; Gomez JG; Silva LF Int J Biol Macromol; 2017 May; 98():654-663. PubMed ID: 28167112 [TBL] [Abstract][Full Text] [Related]
7. Characterization of an (R)-specific enoyl-CoA hydratase from Streptomyces sp. strain CFMR 7: A metabolic tool for enhancing the production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Tan HT; Chek MF; Miyahara Y; Kim SY; Tsuge T; Hakoshima T; Sudesh K J Biosci Bioeng; 2022 Oct; 134(4):288-294. PubMed ID: 35953354 [TBL] [Abstract][Full Text] [Related]
8. Study of the Production of Poly(Hydroxybutyrate- Cabecas Segura P; Onderwater R; Deutschbauer A; Dewasme L; Wattiez R; Leroy B Appl Environ Microbiol; 2022 Mar; 88(6):e0158621. PubMed ID: 35080906 [TBL] [Abstract][Full Text] [Related]
9. Identification of Oil-Loving Shin Y; Kim HJ; Choi TR; Oh SJ; Kim S; Lee Y; Choi S; Oh J; Kim SY; Lee YS; Choi YH; Bhatia SK; Yang YH Polymers (Basel); 2024 Jun; 16(12):. PubMed ID: 38931989 [TBL] [Abstract][Full Text] [Related]
10. Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from plant oil by engineered Ralstonia eutropha strains. Budde CF; Riedel SL; Willis LB; Rha C; Sinskey AJ Appl Environ Microbiol; 2011 May; 77(9):2847-54. PubMed ID: 21398488 [TBL] [Abstract][Full Text] [Related]
11. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(HB-co-HHx)) from butyrate using engineered Ralstonia eutropha. Jeon JM; Brigham CJ; Kim YH; Kim HJ; Yi DH; Kim H; Rha C; Sinskey AJ; Yang YH Appl Microbiol Biotechnol; 2014 Jun; 98(12):5461-9. PubMed ID: 24615385 [TBL] [Abstract][Full Text] [Related]
12. Pseudomonas putida KT2442 as a platform for the biosynthesis of polyhydroxyalkanoates with adjustable monomer contents and compositions. Tripathi L; Wu LP; Dechuan M; Chen J; Wu Q; Chen GQ Bioresour Technol; 2013 Aug; 142():225-31. PubMed ID: 23743426 [TBL] [Abstract][Full Text] [Related]
13. Compositional regulation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by replacement of granule-associated protein in Ralstonia eutropha. Kawashima Y; Orita I; Nakamura S; Fukui T Microb Cell Fact; 2015 Nov; 14():187. PubMed ID: 26597300 [TBL] [Abstract][Full Text] [Related]
14. A review on poly(3-hydroxybutyrate- Tang HJ; Neoh SZ; Sudesh K Front Bioeng Biotechnol; 2022; 10():1057067. PubMed ID: 36545679 [TBL] [Abstract][Full Text] [Related]
15. Microbial Degradation of Polyhydroxyalkanoates with Different Chemical Compositions and Their Biodegradability. Volova TG; Prudnikova SV; Vinogradova ON; Syrvacheva DA; Shishatskaya EI Microb Ecol; 2017 Feb; 73(2):353-367. PubMed ID: 27623963 [TBL] [Abstract][Full Text] [Related]
16. Recovery of the PHA Copolymer P(HB- Bartels M; Gutschmann B; Widmer T; Grimm T; Neubauer P; Riedel SL Front Bioeng Biotechnol; 2020; 8():944. PubMed ID: 32903820 [TBL] [Abstract][Full Text] [Related]
17. Versatile aliphatic polyester biosynthesis system for producing random and block copolymers composed of 2-, 3-, 4-, 5-, and 6-hydroxyalkanoates using the sequence-regulating polyhydroxyalkanoate synthase PhaC Satoh K; Kawakami T; Isobe N; Pasquier L; Tomita H; Zinn M; Matsumoto K Microb Cell Fact; 2022 May; 21(1):84. PubMed ID: 35568875 [TBL] [Abstract][Full Text] [Related]
18. Properties of degradable polyhydroxyalkanoates with different monomer compositions. Volova T; Kiselev E; Nemtsev I; Lukyanenko А; Sukovatyi A; Kuzmin A; Ryltseva G; Shishatskaya E Int J Biol Macromol; 2021 Jul; 182():98-114. PubMed ID: 33836189 [TBL] [Abstract][Full Text] [Related]
19. Biosynthesis of poly(glycolate-co-3-hydroxybutyrate-co-3-hydroxyhexanoate) in Escherichia coli expressing sequence-regulating polyhydroxyalkanoate synthase and medium-chain-length 3-hydroxyalkanoic acid coenzyme A ligase. Tomita H; Satoh K; Nomura CT; Matsumoto K Biosci Biotechnol Biochem; 2022 Jan; 86(2):217-223. PubMed ID: 34788370 [TBL] [Abstract][Full Text] [Related]