These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 39103967)
1. NHEJ and HDR can occur simultaneously during gene integration into the genome of Aspergillus niger. Fritsche S; Reinfurt A; Fronek F; Steiger MG Fungal Biol Biotechnol; 2024 Aug; 11(1):10. PubMed ID: 39103967 [TBL] [Abstract][Full Text] [Related]
2. Highly efficient CRISPR/HDR-mediated knock-in for mouse embryonic stem cells and zygotes. Wang B; Li K; Wang A; Reiser M; Saunders T; Lockey RF; Wang JW Biotechniques; 2015 Oct; 59(4):201-2, 204, 206-8. PubMed ID: 26458548 [TBL] [Abstract][Full Text] [Related]
3. Methods Favoring Homology-Directed Repair Choice in Response to CRISPR/Cas9 Induced-Double Strand Breaks. Yang H; Ren S; Yu S; Pan H; Li T; Ge S; Zhang J; Xia N Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32899704 [TBL] [Abstract][Full Text] [Related]
4. Non-Homologous End Joining and Homology Directed DNA Repair Frequency of Double-Stranded Breaks Introduced by Genome Editing Reagents. Zaboikin M; Zaboikina T; Freter C; Srinivasakumar N PLoS One; 2017; 12(1):e0169931. PubMed ID: 28095454 [TBL] [Abstract][Full Text] [Related]
5. Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing. Miyaoka Y; Berman JR; Cooper SB; Mayerl SJ; Chan AH; Zhang B; Karlin-Neumann GA; Conklin BR Sci Rep; 2016 Mar; 6():23549. PubMed ID: 27030102 [TBL] [Abstract][Full Text] [Related]
6. A high-efficiency and versatile CRISPR/Cas9-mediated HDR-based biallelic editing system. Li X; Sun B; Qian H; Ma J; Paolino M; Zhang Z J Zhejiang Univ Sci B; 2022 Feb; 23(2):141-152. PubMed ID: 35187887 [TBL] [Abstract][Full Text] [Related]
7. Programmable DNA repair with CRISPRa/i enhanced homology-directed repair efficiency with a single Cas9. Ye L; Wang C; Hong L; Sun N; Chen D; Chen S; Han F Cell Discov; 2018; 4():46. PubMed ID: 30062046 [TBL] [Abstract][Full Text] [Related]
8. Zinc finger nuclease-mediated targeting of multiple transgenes to an endogenous soybean genomic locus via non-homologous end joining. Bonawitz ND; Ainley WM; Itaya A; Chennareddy SR; Cicak T; Effinger K; Jiang K; Mall TK; Marri PR; Samuel JP; Sardesai N; Simpson M; Folkerts O; Sarria R; Webb SR; Gonzalez DO; Simmonds DH; Pareddy DR Plant Biotechnol J; 2019 Apr; 17(4):750-761. PubMed ID: 30220095 [TBL] [Abstract][Full Text] [Related]
9. Advance trends in targeting homology-directed repair for accurate gene editing: An inclusive review of small molecules and modified CRISPR-Cas9 systems. Shams F; Bayat H; Mohammadian O; Mahboudi S; Vahidnezhad H; Soosanabadi M; Rahimpour A Bioimpacts; 2022; 12(4):371-391. PubMed ID: 35975201 [No Abstract] [Full Text] [Related]
10. Efficient biallelic knock-in in mouse embryonic stem cells by in vivo-linearization of donor and transient inhibition of DNA polymerase θ/DNA-PK. Arai D; Nakao Y Sci Rep; 2021 Sep; 11(1):18132. PubMed ID: 34518609 [TBL] [Abstract][Full Text] [Related]
11. Increasing CRISPR/Cas9-mediated homology-directed DNA repair by histone deacetylase inhibitors. Li G; Zhang X; Wang H; Liu D; Li Z; Wu Z; Yang H Int J Biochem Cell Biol; 2020 Aug; 125():105790. PubMed ID: 32534122 [TBL] [Abstract][Full Text] [Related]
12. Enhancement of CRISPR-Cas9 induced precise gene editing by targeting histone H2A-K15 ubiquitination. Bashir S; Dang T; Rossius J; Wolf J; Kühn R BMC Biotechnol; 2020 Oct; 20(1):57. PubMed ID: 33097066 [TBL] [Abstract][Full Text] [Related]
13. Modulating mutational outcomes and improving precise gene editing at CRISPR-Cas9-induced breaks by chemical inhibition of end-joining pathways. Schimmel J; Muñoz-Subirana N; Kool H; van Schendel R; van der Vlies S; Kamp JA; de Vrij FMS; Kushner SA; Smith GCM; Boulton SJ; Tijsterman M Cell Rep; 2023 Feb; 42(2):112019. PubMed ID: 36701230 [TBL] [Abstract][Full Text] [Related]
14. Competition between homologous chromosomal DNA and exogenous donor DNA to repair CRISPR/Cas9-induced double-strand breaks in Aspergillus niger. Forrer S; Arentshorst M; Koolth Valappil P; Visser J; Ram AFJ Fungal Biol Biotechnol; 2024 Oct; 11(1):15. PubMed ID: 39407321 [TBL] [Abstract][Full Text] [Related]
15. Opportunities and challenges with CRISPR-Cas mediated homologous recombination based precise editing in plants and animals. Singh S; Chaudhary R; Deshmukh R; Tiwari S Plant Mol Biol; 2023 Jan; 111(1-2):1-20. PubMed ID: 36315306 [TBL] [Abstract][Full Text] [Related]
16. Harnessing accurate non-homologous end joining for efficient precise deletion in CRISPR/Cas9-mediated genome editing. Guo T; Feng YL; Xiao JJ; Liu Q; Sun XN; Xiang JF; Kong N; Liu SC; Chen GQ; Wang Y; Dong MM; Cai Z; Lin H; Cai XJ; Xie AY Genome Biol; 2018 Oct; 19(1):170. PubMed ID: 30340517 [TBL] [Abstract][Full Text] [Related]
17. CRISPR-Cas9 fusion to dominant-negative 53BP1 enhances HDR and inhibits NHEJ specifically at Cas9 target sites. Jayavaradhan R; Pillis DM; Goodman M; Zhang F; Zhang Y; Andreassen PR; Malik P Nat Commun; 2019 Jun; 10(1):2866. PubMed ID: 31253785 [TBL] [Abstract][Full Text] [Related]
18. Proximal binding of dCas9 at a DNA double strand break stimulates homology-directed repair as a local inhibitor of classical non-homologous end joining. Feng YL; Liu SC; Chen RD; Sun XN; Xiao JJ; Xiang JF; Xie AY Nucleic Acids Res; 2023 Apr; 51(6):2740-2758. PubMed ID: 36864759 [TBL] [Abstract][Full Text] [Related]
19. Optimizing the DNA Donor Template for Homology-Directed Repair of Double-Strand Breaks. Song F; Stieger K Mol Ther Nucleic Acids; 2017 Jun; 7():53-60. PubMed ID: 28624224 [TBL] [Abstract][Full Text] [Related]
20. Precise exogenous insertion and sequence replacements in poplar by simultaneous HDR overexpression and NHEJ suppression using CRISPR-Cas9. Movahedi A; Wei H; Zhou X; Fountain JC; Chen ZH; Mu Z; Sun W; Zhang J; Li D; Guo B; Varshney RK; Yang L; Zhuge Q Hortic Res; 2022; 9():uhac154. PubMed ID: 36133672 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]