These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 39104311)
1. Neural network potentials facilitating accurate complex scaling for molecular resonances: from a model to high dimensional realistic systems. Xu Z; Hou S; Wang Z; Xie C Phys Chem Chem Phys; 2024 Aug; 26(32):21861-21873. PubMed ID: 39104311 [TBL] [Abstract][Full Text] [Related]
2. Nonadiabatic heavy atom tunneling in Li C; Hou S; Wang Z; Xie C Phys Chem Chem Phys; 2023 Jul; 25(28):18797-18807. PubMed ID: 37221933 [TBL] [Abstract][Full Text] [Related]
3. Quantum computing for atomic and molecular resonances. Bian T; Kais S J Chem Phys; 2021 May; 154(19):194107. PubMed ID: 34240908 [TBL] [Abstract][Full Text] [Related]
4. Conical intersection seam and bound resonances embedded in continuum observed in the photodissociation of thioanisole-d3. Han S; Lim JS; Yoon JH; Lee J; Kim SY; Kim SK J Chem Phys; 2014 Feb; 140(5):054307. PubMed ID: 24511940 [TBL] [Abstract][Full Text] [Related]
5. Constructing Diabatic Potential Energy Matrices with Neural Networks Based on Adiabatic Energies and Physical Considerations: Toward Quantum Dynamic Accuracy. Li C; Hou S; Xie C J Chem Theory Comput; 2023 Jun; 19(11):3063-3079. PubMed ID: 37216273 [TBL] [Abstract][Full Text] [Related]
6. Permutation invariant polynomial neural network based diabatic ansatz for the (E + A) × (e + a) Jahn-Teller and Pseudo-Jahn-Teller systems. Guan Y; Yarkony DR; Zhang DH J Chem Phys; 2022 Jul; 157(1):014110. PubMed ID: 35803819 [TBL] [Abstract][Full Text] [Related]
7. Nondirect-Product Local Diabatic Representation with Smolyak Sparse Grids. Xie Y; Yang Y; Zhu X; Chen A; Gu B J Chem Theory Comput; 2024 Nov; 20(21):9512-9521. PubMed ID: 39413423 [TBL] [Abstract][Full Text] [Related]
8. Atomic and Molecular Complex Resonances from Real Eigenvalues Using Standard (Hermitian) Electronic Structure Calculations. Landau A; Haritan I; Kaprálová-Žd'ánská PR; Moiseyev N J Phys Chem A; 2016 May; 120(19):3098-108. PubMed ID: 26677725 [TBL] [Abstract][Full Text] [Related]
9. Permutation invariant polynomial neural network approach to fitting potential energy surfaces. IV. Coupled diabatic potential energy matrices. Xie C; Zhu X; Yarkony DR; Guo H J Chem Phys; 2018 Oct; 149(14):144107. PubMed ID: 30316273 [TBL] [Abstract][Full Text] [Related]
10. Representation of coupled adiabatic potential energy surfaces using neural network based quasi-diabatic Hamiltonians: 1,2 Guan Y; Zhang DH; Guo H; Yarkony DR Phys Chem Chem Phys; 2019 Jul; 21(26):14205-14213. PubMed ID: 30523350 [TBL] [Abstract][Full Text] [Related]
11. Accurate complex scaling of three dimensional numerical potentials. Cerioni A; Genovese L; Duchemin I; Deutsch T J Chem Phys; 2013 May; 138(20):204111. PubMed ID: 23742458 [TBL] [Abstract][Full Text] [Related]
12. Towards a highly efficient theoretical treatment of Jahn-Teller effects in molecular spectra: the 1 2A and 2 2A electronic states of the ethoxy radical. Young RA; Yarkony DR J Chem Phys; 2006 Dec; 125(23):234301. PubMed ID: 17190552 [TBL] [Abstract][Full Text] [Related]
13. Neural Network Representation of Three-State Quasidiabatic Hamiltonians Based on the Transformation Properties from a Valence Bond Model: Three Singlet States of H Yin Z; Braams BJ; Fu B; Zhang DH J Chem Theory Comput; 2021 Mar; 17(3):1678-1690. PubMed ID: 33645221 [TBL] [Abstract][Full Text] [Related]
14. Computing resonance energies, widths, and wave functions using a Lanczos method in real arithmetic. Tremblay JC; Carrington T J Chem Phys; 2005 Jun; 122(24):244107. PubMed ID: 16035746 [TBL] [Abstract][Full Text] [Related]
15. Two-state diabatic potential energy surfaces of ClH Yin Z; Guan Y; Fu B; Zhang DH Phys Chem Chem Phys; 2019 Sep; 21(36):20372-20383. PubMed ID: 31498342 [TBL] [Abstract][Full Text] [Related]
16. Extending Quantum Chemistry of Bound States to Electronic Resonances. Jagau TC; Bravaya KB; Krylov AI Annu Rev Phys Chem; 2017 May; 68():525-553. PubMed ID: 28463649 [TBL] [Abstract][Full Text] [Related]
17. Nonadiabatic Dynamics in Photodissociation of Hydroxymethyl in the 3 Xie C; Malbon CL; Xie D; Yarkony DR; Guo H J Phys Chem A; 2019 Mar; 123(10):1937-1944. PubMed ID: 30789267 [TBL] [Abstract][Full Text] [Related]
18. Three-Dimensional Diabatic Potential Energy Surfaces for the Photodissociation of Thiophenol. Lin GS; Xie C; Xie D J Phys Chem A; 2017 Nov; 121(44):8432-8439. PubMed ID: 29045150 [TBL] [Abstract][Full Text] [Related]
19. Resonances of HCO Computed Using an Approach Based on the Multiconfiguration Time-Dependent Hartree Method. Ndengué SA; Dawes R; Gatti F; Meyer HD J Phys Chem A; 2015 Dec; 119(50):12043-51. PubMed ID: 26070014 [TBL] [Abstract][Full Text] [Related]
20. A fundamental invariant-neural network representation of quasi-diabatic Hamiltonians for the two lowest states of H Yin Z; Braams BJ; Guan Y; Fu B; Zhang DH Phys Chem Chem Phys; 2021 Jan; 23(2):1082-1091. PubMed ID: 33346765 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]