These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 39104481)

  • 1. Pyrolysis of metal oxides treated
    Garba K; Mohammed HI; Isa YM
    Heliyon; 2024 Jul; 10(14):e34435. PubMed ID: 39104481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyrolysis of
    Garba K; Mohammed IY; Isa YM; Abubakar LG; Abakr YA; Hameed BH
    Heliyon; 2023 Feb; 9(2):e13234. PubMed ID: 36785823
    [No Abstract]   [Full Text] [Related]  

  • 3. Pyrolysis and combustion kinetics of Sida cordifolia L. using thermogravimetric analysis.
    Boubacar Laougé Z; Merdun H
    Bioresour Technol; 2020 Mar; 299():122602. PubMed ID: 31869633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyrolysis of banana leaves biomass: Physico-chemical characterization, thermal decomposition behavior, kinetic and thermodynamic analyses.
    Singh RK; Pandey D; Patil T; Sawarkar AN
    Bioresour Technol; 2020 Aug; 310():123464. PubMed ID: 32388356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of kinetic triplet, thermal degradation behaviour and thermodynamic properties for pyrolysis of a lignocellulosic biomass.
    Açıkalın K
    Bioresour Technol; 2021 Oct; 337():125438. PubMed ID: 34166929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal pyrolysis characteristics and kinetics of hemicellulose isolated from Camellia Oleifera Shell.
    Lei Z; Wang S; Fu H; Gao W; Wang B; Zeng J; Xu J
    Bioresour Technol; 2019 Jun; 282():228-235. PubMed ID: 30870688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics, thermodynamics, and thermal decomposition behavior of palm oil empty fruit bunch, coconut shell, bamboo, and cardboard pyrolysis: an integrated approach using Coats-Redfern method.
    Supee AH; Zaini MAA
    Environ Monit Assess; 2023 Sep; 195(10):1218. PubMed ID: 37718332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative study on the pyrolysis kinetics of polyurethane foam from waste refrigerators.
    Yao Z; Yu S; Su W; Wu W; Tang J; Qi W
    Waste Manag Res; 2020 Mar; 38(3):271-278. PubMed ID: 31599207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic study on the slow pyrolysis of nonmetal fraction of waste printed circuit boards (NMF-WPCBs).
    Yao Z; Xiong J; Yu S; Su W; Wu W; Tang J; Wu D
    Waste Manag Res; 2020 Aug; 38(8):903-910. PubMed ID: 31918637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermogravimetric and kinetic studies of metal (Ru/Fe) impregnated banana pseudo-stem (Musa acuminate).
    Kumar A; Mylapilli SVP; Reddy SN
    Bioresour Technol; 2019 Aug; 285():121318. PubMed ID: 30981011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic studies on the pyrolysis of plastic waste using a combination of model-fitting and model-free methods.
    Yao Z; Yu S; Su W; Wu W; Tang J; Qi W
    Waste Manag Res; 2020 May; 38(1_suppl):77-85. PubMed ID: 31957598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyrolysis of almond (Prunus amygdalus) shells: Kinetic analysis, modelling, energy assessment and technical feasibility studies.
    Rasool T; Najar I; Srivastava VC; Pandey A
    Bioresour Technol; 2021 Oct; 337():125466. PubMed ID: 34320746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis.
    Mishra RK; Mohanty K
    Bioresour Technol; 2018 Mar; 251():63-74. PubMed ID: 29272770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamics, kinetics and thermal decomposition characteristics of sewage sludge during slow pyrolysis.
    Mphahlele K; Matjie RH; Osifo PO
    J Environ Manage; 2021 Apr; 284():112006. PubMed ID: 33535126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyrolytic degradation of peanut shell: Activation energy dependence on the conversion.
    Torres-García E; Ramírez-Verduzco LF; Aburto J
    Waste Manag; 2020 Apr; 106():203-212. PubMed ID: 32240937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomass valorization of Eichhornia crassipes root using thermogravimetric analysis.
    Pal DB; Tiwari AK; Srivastava N; Ahmad I; Abohashrh M; Gupta VK
    Environ Res; 2022 Nov; 214(Pt 4):114046. PubMed ID: 35998700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamics and Kinetics Parameters of Eichhornia crassipes Biomass for Bioenergy.
    Afzal I; Ahmad MS; Malik S; Ibrahim M; Al Ayed OS; Qadir G; Al Doghaither H; Gull M
    Protein Pept Lett; 2018; 25(2):187-194. PubMed ID: 29359651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of CO
    Altriki A; Ali I; Razzak SA; Ahmad I; Farooq W
    Front Bioeng Biotechnol; 2022; 10():925391. PubMed ID: 36061435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal decomposition and kinetics of coal and fermented cornstalk using thermogravimetric analysis.
    He Y; Chang C; Li P; Han X; Li H; Fang S; Chen J; Ma X
    Bioresour Technol; 2018 Jul; 259():294-303. PubMed ID: 29573608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic pyrolysis of Chlorella vulgaris: Kinetic and thermodynamic analysis.
    Fong MJB; Loy ACM; Chin BLF; Lam MK; Yusup S; Jawad ZA
    Bioresour Technol; 2019 Oct; 289():121689. PubMed ID: 31252316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.