These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 39104628)
1. Deep learning and remote photoplethysmography powered advancements in contactless physiological measurement. Chen W; Yi Z; Lim LJR; Lim RQR; Zhang A; Qian Z; Huang J; He J; Liu B Front Bioeng Biotechnol; 2024; 12():1420100. PubMed ID: 39104628 [TBL] [Abstract][Full Text] [Related]
2. Deep Learning Methods for Remote Heart Rate Measurement: A Review and Future Research Agenda. Cheng CH; Wong KL; Chin JW; Chan TT; So RHY Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577503 [TBL] [Abstract][Full Text] [Related]
3. Blood Pressure Measurement: From Cuff-Based to Contactless Monitoring. Man PK; Cheung KL; Sangsiri N; Shek WJ; Wong KL; Chin JW; Chan TT; So RH Healthcare (Basel); 2022 Oct; 10(10):. PubMed ID: 36292560 [TBL] [Abstract][Full Text] [Related]
4. A Review of Deep Learning-Based Contactless Heart Rate Measurement Methods. Ni A; Azarang A; Kehtarnavaz N Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34071736 [TBL] [Abstract][Full Text] [Related]
5. Measurement of Vital Signs by Lifelight Software in Comparison to Standard of Care Multisite Development (VISION-MD): Protocol for an Observational Study. Wiffen L; Brown T; Brogaard Maczka A; Kapoor M; Pearce L; Chauhan M; Chauhan AJ; Saxena M; JMIR Res Protoc; 2023 Jan; 12():e41533. PubMed ID: 36630158 [TBL] [Abstract][Full Text] [Related]
6. Contactless Blood Pressure Measurement Via Remote Photoplethysmography With Synthetic Data Generation Using Generative Adversarial Networks. Wu BF; Chiu LW; Wu YC; Lai CC; Cheng HM; Chu PH IEEE J Biomed Health Inform; 2024 Feb; 28(2):621-632. PubMed ID: 37037253 [TBL] [Abstract][Full Text] [Related]
7. Effects of illuminance intensity on the green channel of remote photoplethysmography (rPPG) signals. Guler S; Ozturk O; Golparvar A; Dogan H; Yapici MK Phys Eng Sci Med; 2022 Dec; 45(4):1317-1323. PubMed ID: 36036875 [TBL] [Abstract][Full Text] [Related]
8. Cost-Effective Solution of Remote Photoplethysmography Capable of Real-Time, Multi-Subject Monitoring with Social Distancing. Huang HW; Rupp P; Chen J; Kemkar A; Khandelwal N; Ballinger I; Chai P; Traverso G Proc IEEE Sens; 2022; 2022():. PubMed ID: 36570065 [TBL] [Abstract][Full Text] [Related]
9. Measurement of Vital Signs Using Lifelight Remote Photoplethysmography: Results of the VISION-D and VISION-V Observational Studies. Heiden E; Jones T; Brogaard Maczka A; Kapoor M; Chauhan M; Wiffen L; Barham H; Holland J; Saxena M; Wegerif S; Brown T; Lomax M; Massey H; Rostami S; Pearce L; Chauhan A JMIR Form Res; 2022 Nov; 6(11):e36340. PubMed ID: 36374541 [TBL] [Abstract][Full Text] [Related]
10. Contactless Vital Signs Monitoring From Videos Recorded With Digital Cameras: An Overview. Molinaro N; Schena E; Silvestri S; Bonotti F; Aguzzi D; Viola E; Buccolini F; Massaroni C Front Physiol; 2022; 13():801709. PubMed ID: 35250612 [TBL] [Abstract][Full Text] [Related]
11. Dynamic Region of Interest Selection in Remote Photoplethysmography: Proof-of-Concept Study. Kiddle A; Barham H; Wegerif S; Petronzio C JMIR Form Res; 2023 Mar; 7():e44575. PubMed ID: 36995742 [TBL] [Abstract][Full Text] [Related]
12. Conventional and deep learning methods in heart rate estimation from RGB face videos. Helwan A; Azar D; Ma'aitah MKS Physiol Meas; 2024 Feb; 45(2):. PubMed ID: 38081130 [TBL] [Abstract][Full Text] [Related]
13. GRGB rPPG: An Efficient Low-Complexity Remote Photoplethysmography-Based Algorithm for Heart Rate Estimation. Haugg F; Elgendi M; Menon C Bioengineering (Basel); 2023 Feb; 10(2):. PubMed ID: 36829737 [TBL] [Abstract][Full Text] [Related]
14. Contactless Camera-Based Heart Rate and Respiratory Rate Monitoring Using AI on Hardware. Kolosov D; Kelefouras V; Kourtessis P; Mporas I Sensors (Basel); 2023 May; 23(9):. PubMed ID: 37177754 [TBL] [Abstract][Full Text] [Related]
15. Contactless face video based vital signs detection framework for continuous health monitoring using feature optimization and hybrid neural network. Anil Jalaja A; Kavitha M Biotechnol Bioeng; 2024 Apr; 121(4):1191-1215. PubMed ID: 38221763 [TBL] [Abstract][Full Text] [Related]
16. Optimal digital filter selection for remote photoplethysmography (rPPG) signal conditioning. Guler S; Golparvar A; Ozturk O; Dogan H; Kaya Yapici M Biomed Phys Eng Express; 2023 Jan; 9(2):. PubMed ID: 36596253 [TBL] [Abstract][Full Text] [Related]
17. DiffPhys: Enhancing Signal-to-Noise Ratio in Remote Photoplethysmography Signal Using a Diffusion Model Approach. Chen S; Wong KL; Chin JW; Chan TT; So RHY Bioengineering (Basel); 2024 Jul; 11(8):. PubMed ID: 39199701 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of a Camera-Based Monitoring Solution Against Regulated Medical Devices to Measure Heart Rate, Respiratory Rate, Oxygen Saturation, and Blood Pressure. Talukdar D; De Deus LF; Sehgal N Cureus; 2022 Nov; 14(11):e31649. PubMed ID: 36540478 [TBL] [Abstract][Full Text] [Related]
19. Deep learning-based remote-photoplethysmography measurement from short-time facial video. Li B; Jiang W; Peng J; Li X Physiol Meas; 2022 Nov; 43(11):. PubMed ID: 36215976 [No Abstract] [Full Text] [Related]