These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 39105551)

  • 1. Plasmon dephasing time and optical field enhancement in a plasmonic nanobowl substrate studied by scanning near-field optical microscopy.
    Hasegawa S; Kanoda M; Tamura M; Hayashi K; Tokonami S; Iida T; Imura K
    J Chem Phys; 2024 Aug; 161(5):. PubMed ID: 39105551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring Coupled Plasmonic Nanostructures in the Near Field by Photoemission Electron Microscopy.
    Yu H; Sun Q; Ueno K; Oshikiri T; Kubo A; Matsuo Y; Misawa H
    ACS Nano; 2016 Nov; 10(11):10373-10381. PubMed ID: 27775321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial characteristics of optical fields near a gold nanorod revealed by three-dimensional scanning near-field optical microscopy.
    Suzuki H; Imaeda K; Mizobata H; Imura K
    J Chem Phys; 2020 Jan; 152(1):014708. PubMed ID: 31914735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative and Direct Near-Field Analysis of Plasmonic-Induced Transparency and the Observation of a Plasmonic Breathing Mode.
    Khunsin W; Dorfmüller J; Esslinger M; Vogelgesang R; Rockstuhl C; Etrich C; Kern K
    ACS Nano; 2016 Feb; 10(2):2214-24. PubMed ID: 26789080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmon modes in single gold nanodiscs.
    Imura K; Ueno K; Misawa H; Okamoto H; McArthur D; Hourahine B; Papoff F
    Opt Express; 2014 May; 22(10):12189-99. PubMed ID: 24921339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Static and Dynamic Near-Field Measurements of High-Order Plasmon Modes Induced in a Gold Triangular Nanoplate.
    Imaeda K; Hasegawa S; Imura K
    J Phys Chem Lett; 2018 Jul; 9(14):4075-4081. PubMed ID: 29985621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advancing Plasmon-Induced Selectivity in Chemical Transformations with Optically Coupled Transmission Electron Microscopy.
    Swearer DF; Bourgeois BB; Angell DK; Dionne JA
    Acc Chem Res; 2021 Oct; 54(19):3632-3642. PubMed ID: 34492177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscale Imaging of Local Few-Femtosecond Near-Field Dynamics within a Single Plasmonic Nanoantenna.
    Mårsell E; Losquin A; Svärd R; Miranda M; Guo C; Harth A; Lorek E; Mauritsson J; Arnold CL; Xu H; L'Huillier A; Mikkelsen A
    Nano Lett; 2015 Oct; 15(10):6601-8. PubMed ID: 26375959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tip-Enhanced Raman Excitation Spectroscopy (TERES): Direct Spectral Characterization of the Gap-Mode Plasmon.
    Yang M; Mattei MS; Cherqui CR; Chen X; Van Duyne RP; Schatz GC
    Nano Lett; 2019 Oct; 19(10):7309-7316. PubMed ID: 31518135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observation of Plasmon Wave Packet Motions via Femtosecond Time-Resolved Near-Field Imaging Techniques.
    Nishiyama Y; Imura K; Okamoto H
    Nano Lett; 2015 Nov; 15(11):7657-65. PubMed ID: 26479085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-Field Enhanced Photochemistry of Single Molecules in a Scanning Tunneling Microscope Junction.
    Böckmann H; Gawinkowski S; Waluk J; Raschke MB; Wolf M; Kumagai T
    Nano Lett; 2018 Jan; 18(1):152-157. PubMed ID: 29266954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local optical responses of plasmon resonances visualised by near-field optical imaging.
    Okamoto H; Narushima T; Nishiyama Y; Imura K
    Phys Chem Chem Phys; 2015 Mar; 17(9):6192-206. PubMed ID: 25660963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation between Near-Field Enhancement and Dephasing Time in Plasmonic Dimers.
    Li Y; Sun Q; Zu S; Shi X; Liu Y; Hu X; Ueno K; Gong Q; Misawa H
    Phys Rev Lett; 2020 Apr; 124(16):163901. PubMed ID: 32383952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrating collapsible plasmonic gaps on near-field probes for polarization-resolved mapping of plasmon-enhanced emission in 2D material.
    Zhou J; Barnard E; Cabrini S; Munechika K; Schwartzberg A; Weber-Bargioni A
    Opt Express; 2023 Jun; 31(12):20440-20448. PubMed ID: 37381438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Field enhancement and spectral features of hexagonal necklaces of silver nanoparticles for enhanced nonlinear optical processes.
    Gómez-Tornero A; Tserkezis C; Moreno JR; Bausá LE; Ramírez MO
    Opt Express; 2018 Aug; 26(17):22394-22404. PubMed ID: 30130934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excitation of dark plasmonic cavity modes via nonlinearly induced dipoles: applications to near-infrared plasmonic sensing.
    Biris CG; Panoiu NC
    Nanotechnology; 2011 Jun; 22(23):235502. PubMed ID: 21474872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupled plasmonic systems: controlling the plasmon dynamics and spectral modulations for molecular detection.
    Kitajima Y; Sakamoto H; Ueno K
    Nanoscale; 2021 Mar; 13(10):5187-5201. PubMed ID: 33687413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct Measurement of Optical Force Induced by Near-Field Plasmonic Cavity Using Dynamic Mode AFM.
    Guan D; Hang ZH; Marcet Z; Liu H; Kravchenko II; Chan CT; Chan HB; Tong P
    Sci Rep; 2015 Nov; 5():16216. PubMed ID: 26586455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unveiling Spatial and Temporal Dynamics of Plasmon-Enhanced Localized Fields in Metallic Nanoframes through Ultrafast Electron Microscopy.
    Tanriover I; Li Y; Gage TE; Arslan I; Liu H; Mirkin CA; Aydin K
    ACS Nano; 2024 Oct; 18(41):28258-28267. PubMed ID: 39351793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficiency of Plasmon-Induced Dual-Mode Fluorescence Enhancement upon Two-Photon Excitation.
    Shokova MA; Bochenkov VE
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.