These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 39105557)

  • 1. Optimal tree tensor network operators for tensor network simulations: Applications to open quantum systems.
    Li W; Ren J; Yang H; Wang H; Shuai Z
    J Chem Phys; 2024 Aug; 161(5):. PubMed ID: 39105557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tree tensor network state approach for solving hierarchical equations of motion.
    Ke Y
    J Chem Phys; 2023 Jun; 158(21):. PubMed ID: 37259990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tree Tensor Network State with Variable Tensor Order: An Efficient Multireference Method for Strongly Correlated Systems.
    Murg V; Verstraete F; Schneider R; Nagy PR; Legeza Ö
    J Chem Theory Comput; 2015 Mar; 11(3):1027-36. PubMed ID: 25844072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient tree tensor network states (TTNS) for quantum chemistry: generalizations of the density matrix renormalization group algorithm.
    Nakatani N; Chan GK
    J Chem Phys; 2013 Apr; 138(13):134113. PubMed ID: 23574214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploiting the Causal Tensor Network Structure of Quantum Processes to Efficiently Simulate Non-Markovian Path Integrals.
    Jørgensen MR; Pollock FA
    Phys Rev Lett; 2019 Dec; 123(24):240602. PubMed ID: 31922869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-equilibrium relaxation of hot states in organic semiconductors: Impact of mode-selective excitation on charge transfer.
    Alvertis AM; Schröder FAYN; Chin AW
    J Chem Phys; 2019 Aug; 151(8):084104. PubMed ID: 31470711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MPSDynamics.jl: Tensor network simulations for finite-temperature (non-Markovian) open quantum system dynamics.
    Lacroix T; Le Dé B; Riva A; Dunnett AJ; Chin AW
    J Chem Phys; 2024 Aug; 161(8):. PubMed ID: 39206827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Matrix Product State Simulations of Non-Equilibrium Steady States and Transient Heat Flows in the Two-Bath Spin-Boson Model at Finite Temperatures.
    Dunnett AJ; Chin AW
    Entropy (Basel); 2021 Jan; 23(1):. PubMed ID: 33419175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ACE: A general-purpose non-Markovian open quantum systems simulation toolkit based on process tensors.
    Cygorek M; Gauger EM
    J Chem Phys; 2024 Aug; 161(7):. PubMed ID: 39158046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. T3NS: Three-Legged Tree Tensor Network States.
    Gunst K; Verstraete F; Wouters S; Legeza Ö; Van Neck D
    J Chem Theory Comput; 2018 Apr; 14(4):2026-2033. PubMed ID: 29481743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A general automatic method for optimal construction of matrix product operators using bipartite graph theory.
    Ren J; Li W; Jiang T; Shuai Z
    J Chem Phys; 2020 Aug; 153(8):084118. PubMed ID: 32872857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient propagation of the hierarchical equations of motion using the Tucker and hierarchical Tucker tensors.
    Yan Y; Xu M; Li T; Shi Q
    J Chem Phys; 2021 May; 154(19):194104. PubMed ID: 34240893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exact Non-Markovian Quantum Dynamics on the NISQ Device Using Kraus Operators.
    Seneviratne A; Walters PL; Wang F
    ACS Omega; 2024 Feb; 9(8):9666-9675. PubMed ID: 38434817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tensor network approach to thermalization in open quantum many-body systems.
    Nakano H; Shirai T; Mori T
    Phys Rev E; 2021 Apr; 103(4):L040102. PubMed ID: 34005857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. QuTree: A tree tensor network package.
    Ellerbrock R; Johnson KG; Seritan S; Hoppe H; Zhang JH; Lenzen T; Weike T; Manthe U; Martínez TJ
    J Chem Phys; 2024 Mar; 160(11):. PubMed ID: 38497471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benchmarking treewidth as a practical component of tensor network simulations.
    Dumitrescu EF; Fisher AL; Goodrich TD; Humble TS; Sullivan BD; Wright AL
    PLoS One; 2018; 13(12):e0207827. PubMed ID: 30562341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Entanglement of Formation of Mixed Many-Body Quantum States via Tree Tensor Operators.
    Arceci L; Silvi P; Montangero S
    Phys Rev Lett; 2022 Jan; 128(4):040501. PubMed ID: 35148155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tensor-Train Split-Operator KSL (TT-SOKSL) Method for Quantum Dynamics Simulations.
    Lyu N; Soley MB; Batista VS
    J Chem Theory Comput; 2022 Jun; 18(6):3327-3346. PubMed ID: 35649210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of Quantum Dynamics of Excitonic Systems at Finite Temperature: an efficient method based on Thermo Field Dynamics.
    Borrelli R; Gelin MF
    Sci Rep; 2017 Aug; 7(1):9127. PubMed ID: 28831074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. WaveTrain: A Python package for numerical quantum mechanics of chain-like systems based on tensor trains.
    Riedel J; Gelß P; Klein R; Schmidt B
    J Chem Phys; 2023 Apr; 158(16):. PubMed ID: 37114709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.