These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 39105804)
1. Differential Effects of Sequence-Local versus Nonlocal Charge Patterns on Phase Separation and Conformational Dimensions of Polyampholytes as Model Intrinsically Disordered Proteins. Pal T; Wessén J; Das S; Chan HS J Phys Chem Lett; 2024 Aug; 15(32):8248-8256. PubMed ID: 39105804 [TBL] [Abstract][Full Text] [Related]
2. Coarse-grained residue-based models of disordered protein condensates: utility and limitations of simple charge pattern parameters. Das S; Amin AN; Lin YH; Chan HS Phys Chem Chem Phys; 2018 Nov; 20(45):28558-28574. PubMed ID: 30397688 [TBL] [Abstract][Full Text] [Related]
3. Hydropathy Patterning Complements Charge Patterning to Describe Conformational Preferences of Disordered Proteins. Zheng W; Dignon G; Brown M; Kim YC; Mittal J J Phys Chem Lett; 2020 May; 11(9):3408-3415. PubMed ID: 32227994 [TBL] [Abstract][Full Text] [Related]
4. Balancing thermodynamic stability, dynamics, and kinetics in phase separation of intrinsically disordered proteins. Zhang G; Chu X J Chem Phys; 2024 Sep; 161(9):. PubMed ID: 39225535 [TBL] [Abstract][Full Text] [Related]
5. Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues. Das RK; Pappu RV Proc Natl Acad Sci U S A; 2013 Aug; 110(33):13392-7. PubMed ID: 23901099 [TBL] [Abstract][Full Text] [Related]
6. Thermodynamic and sequential characteristics of phase separation and droplet formation for an intrinsically disordered region/protein ensemble. Chu WT; Wang J PLoS Comput Biol; 2021 Mar; 17(3):e1008672. PubMed ID: 33684117 [TBL] [Abstract][Full Text] [Related]
7. Phase Separation and Single-Chain Compactness of Charged Disordered Proteins Are Strongly Correlated. Lin YH; Chan HS Biophys J; 2017 May; 112(10):2043-2046. PubMed ID: 28483149 [TBL] [Abstract][Full Text] [Related]
8. Information theoretic measures for quantifying sequence-ensemble relationships of intrinsically disordered proteins. Cohan MC; Ruff KM; Pappu RV Protein Eng Des Sel; 2019 Dec; 32(4):191-202. PubMed ID: 31375817 [TBL] [Abstract][Full Text] [Related]
9. Identifying sequence perturbations to an intrinsically disordered protein that determine its phase-separation behavior. Schuster BS; Dignon GL; Tang WS; Kelley FM; Ranganath AK; Jahnke CN; Simpkins AG; Regy RM; Hammer DA; Good MC; Mittal J Proc Natl Acad Sci U S A; 2020 May; 117(21):11421-11431. PubMed ID: 32393642 [TBL] [Abstract][Full Text] [Related]
10. Ion Mobility Mass Spectrometry Uncovers the Impact of the Patterning of Oppositely Charged Residues on the Conformational Distributions of Intrinsically Disordered Proteins. Beveridge R; Migas LG; Das RK; Pappu RV; Kriwacki RW; Barran PE J Am Chem Soc; 2019 Mar; 141(12):4908-4918. PubMed ID: 30823702 [TBL] [Abstract][Full Text] [Related]
11. Crosslink-Induced Conformation Change of Intrinsically Disordered Proteins Have a Nontrivial Effect on Phase Separation Dynamics and Thermodynamics. Li L; Hou Z J Phys Chem B; 2023 Jun; 127(22):5018-5026. PubMed ID: 37222424 [TBL] [Abstract][Full Text] [Related]
12. Toward Accurate Simulation of Coupling between Protein Secondary Structure and Phase Separation. Zhang Y; Li S; Gong X; Chen J J Am Chem Soc; 2024 Jan; 146(1):342-357. PubMed ID: 38112495 [TBL] [Abstract][Full Text] [Related]
13. Numerical Techniques for Applications of Analytical Theories to Sequence-Dependent Phase Separations of Intrinsically Disordered Proteins. Lin YH; Wessén J; Pal T; Das S; Chan HS Methods Mol Biol; 2023; 2563():51-94. PubMed ID: 36227468 [TBL] [Abstract][Full Text] [Related]
14. Relevance of Electrostatic Charges in Compactness, Aggregation, and Phase Separation of Intrinsically Disordered Proteins. Bianchi G; Longhi S; Grandori R; Brocca S Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32867340 [TBL] [Abstract][Full Text] [Related]
15. Sequence Effects on Size, Shape, and Structural Heterogeneity in Intrinsically Disordered Proteins. Baul U; Chakraborty D; Mugnai ML; Straub JE; Thirumalai D J Phys Chem B; 2019 Apr; 123(16):3462-3474. PubMed ID: 30913885 [TBL] [Abstract][Full Text] [Related]
16. A Lattice Model of Charge-Pattern-Dependent Polyampholyte Phase Separation. Das S; Eisen A; Lin YH; Chan HS J Phys Chem B; 2018 May; 122(21):5418-5431. PubMed ID: 29397728 [TBL] [Abstract][Full Text] [Related]
17. An analytical theory to describe sequence-specific inter-residue distance profiles for polyampholytes and intrinsically disordered proteins. Huihui J; Ghosh K J Chem Phys; 2020 Apr; 152(16):161102. PubMed ID: 32357776 [TBL] [Abstract][Full Text] [Related]
18. Sampling Long- versus Short-Range Interactions Defines the Ability of Force Fields To Reproduce the Dynamics of Intrinsically Disordered Proteins. Mercadante D; Wagner JA; Aramburu IV; Lemke EA; Gräter F J Chem Theory Comput; 2017 Sep; 13(9):3964-3974. PubMed ID: 28805390 [TBL] [Abstract][Full Text] [Related]
19. Intrinsically disordered proteins access a range of hysteretic phase separation behaviors. Garcia Quiroz F; Li NK; Roberts S; Weber P; Dzuricky M; Weitzhandler I; Yingling YG; Chilkoti A Sci Adv; 2019 Oct; 5(10):eaax5177. PubMed ID: 31667345 [TBL] [Abstract][Full Text] [Related]
20. Charge fluctuation effects on the shape of flexible polyampholytes with applications to intrinsically disordered proteins. Samanta HS; Chakraborty D; Thirumalai D J Chem Phys; 2018 Oct; 149(16):163323. PubMed ID: 30384718 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]