These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 39105824)

  • 21. Phytoremediation technologies and their mechanism for removal of heavy metal from contaminated soil: An approach for a sustainable environment.
    Sharma JK; Kumar N; Singh NP; Santal AR
    Front Plant Sci; 2023; 14():1076876. PubMed ID: 36778693
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Diazotrophs-assisted phytoremediation of heavy metals: a novel approach.
    Ullah A; Mushtaq H; Ali H; Munis MF; Javed MT; Chaudhary HJ
    Environ Sci Pollut Res Int; 2015 Feb; 22(4):2505-14. PubMed ID: 25339525
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A review on bioremediation approach for heavy metal detoxification and accumulation in plants.
    Yaashikaa PR; Kumar PS; Jeevanantham S; Saravanan R
    Environ Pollut; 2022 May; 301():119035. PubMed ID: 35196562
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hazardous heavy metals contamination of vegetables and food chain: Role of sustainable remediation approaches - A review.
    Kumar S; Prasad S; Yadav KK; Shrivastava M; Gupta N; Nagar S; Bach QV; Kamyab H; Khan SA; Yadav S; Malav LC
    Environ Res; 2019 Dec; 179(Pt A):108792. PubMed ID: 31610391
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Native herbaceous plant species with potential use in phytoremediation of heavy metals, spotlight on wetlands - A review.
    Oyuela Leguizamo MA; Fernández Gómez WD; Sarmiento MCG
    Chemosphere; 2017 Feb; 168():1230-1247. PubMed ID: 27823781
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heavy metal accumulation and signal transduction in herbaceous and woody plants: Paving the way for enhancing phytoremediation efficiency.
    Luo ZB; He J; Polle A; Rennenberg H
    Biotechnol Adv; 2016 Nov; 34(6):1131-1148. PubMed ID: 27422434
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting?
    Rascio N; Navari-Izzo F
    Plant Sci; 2011 Feb; 180(2):169-81. PubMed ID: 21421358
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils.
    Jing YD; He ZL; Yang XE
    J Zhejiang Univ Sci B; 2007 Mar; 8(3):192-207. PubMed ID: 17323432
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phytoremediation technology and food security impacts of heavy metal contaminated soils: A review of literature.
    Oladoye PO; Olowe OM; Asemoloye MD
    Chemosphere; 2022 Feb; 288(Pt 2):132555. PubMed ID: 34653492
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phytoremediation of Heavy Metal-Contaminated Sites: Eco-environmental Concerns, Field Studies, Sustainability Issues, and Future Prospects.
    Saxena G; Purchase D; Mulla SI; Saratale GD; Bharagava RN
    Rev Environ Contam Toxicol; 2020; 249():71-131. PubMed ID: 30806802
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land.
    Yan A; Wang Y; Tan SN; Mohd Yusof ML; Ghosh S; Chen Z
    Front Plant Sci; 2020; 11():359. PubMed ID: 32425957
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biotechnological strategies for enhancing heavy metal tolerance in neglected and underutilized legume crops: A comprehensive review.
    Rai KK; Pandey N; Meena RP; Rai SP
    Ecotoxicol Environ Saf; 2021 Jan; 208():111750. PubMed ID: 33396075
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Role of Plant Growth-Promoting Bacteria in Metal Phytoremediation.
    Kong Z; Glick BR
    Adv Microb Physiol; 2017; 71():97-132. PubMed ID: 28760324
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microbially supported phytoremediation of heavy metal contaminated soils: strategies and applications.
    Phieler R; Voit A; Kothe E
    Adv Biochem Eng Biotechnol; 2014; 141():211-35. PubMed ID: 23719709
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comprehensive mechanisms of heavy metal toxicity in plants, detoxification, and remediation.
    Ghuge SA; Nikalje GC; Kadam US; Suprasanna P; Hong JC
    J Hazard Mater; 2023 May; 450():131039. PubMed ID: 36867909
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multi-criteria decision analysis of optimal planting for enhancing phytoremediation of trace heavy metals in mining sites under interval residual contaminant concentrations.
    Lu J; Lu H; Li J; Liu J; Feng S; Guan Y
    Environ Pollut; 2019 Dec; 255(Pt 2):113255. PubMed ID: 31563784
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prospect of phytoremediation combined with other approaches for remediation of heavy metal-polluted soils.
    Liu S; Yang B; Liang Y; Xiao Y; Fang J
    Environ Sci Pollut Res Int; 2020 May; 27(14):16069-16085. PubMed ID: 32173779
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heavy metals in plants and phytoremediation.
    Cheng S
    Environ Sci Pollut Res Int; 2003; 10(5):335-40. PubMed ID: 14535650
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach.
    Rai PK
    Int J Phytoremediation; 2008; 10(2):131-58. PubMed ID: 18709926
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: A review.
    Manoj SR; Karthik C; Kadirvelu K; Arulselvi PI; Shanmugasundaram T; Bruno B; Rajkumar M
    J Environ Manage; 2020 Jan; 254():109779. PubMed ID: 31726280
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.