These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 39105923)

  • 1. Omic Evaluation of Nanomaterial-Based Photodynamic Therapy of Cancer.
    Beşbınar ÖB; Uyar R; Yilmazer A
    Methods Mol Biol; 2024; 2835():277-288. PubMed ID: 39105923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upconversion in photodynamic therapy: plumbing the depths.
    Hamblin MR
    Dalton Trans; 2018 Jul; 47(26):8571-8580. PubMed ID: 29451568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilisation of Targeted Nanoparticle Photosensitiser Drug Delivery Systems for the Enhancement of Photodynamic Therapy.
    Kruger CA; Abrahamse H
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30322132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review of nanoparticle photosensitizer drug delivery uptake systems for photodynamic treatment of lung cancer.
    Mokwena MG; Kruger CA; Ivan MT; Heidi A
    Photodiagnosis Photodyn Ther; 2018 Jun; 22():147-154. PubMed ID: 29588217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of Biotechnological Photosensitizers for Photodynamic Therapy: Cancer Research and Treatment-From Benchtop to Clinical Practice.
    Aires-Fernandes M; Botelho Costa R; Rochetti do Amaral S; Mussagy CU; Santos-Ebinuma VC; Primo FL
    Molecules; 2022 Oct; 27(20):. PubMed ID: 36296441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expanding the Limits of Photodynamic Therapy: The Design of Organelles and Hypoxia-Targeting Nanomaterials for Enhanced Photokilling of Cancer.
    Calori IR; Bi H; Tedesco AC
    ACS Appl Bio Mater; 2021 Jan; 4(1):195-228. PubMed ID: 35014281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanomaterials-based photosensitizers and delivery systems for photodynamic cancer therapy.
    Yu XT; Sui SY; He YX; Yu CH; Peng Q
    Biomater Adv; 2022 Apr; 135():212725. PubMed ID: 35929205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 808 nm Light-triggered and hyaluronic acid-targeted dual-photosensitizers nanoplatform by fully utilizing Nd(3+)-sensitized upconversion emission with enhanced anti-tumor efficacy.
    Hou Z; Deng K; Li C; Deng X; Lian H; Cheng Z; Jin D; Lin J
    Biomaterials; 2016 Sep; 101():32-46. PubMed ID: 27267626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Possible Mechanisms of Resistance Development to Photodynamic Therapy (PDT) In Vulvar Cancer Cells.
    Mossakowska BJ; Fabisiewicz A; Tudek B; Siedlecki JA
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme-Assisted Photodynamic Therapy Based on Nanomaterials.
    Du B; Tung CH
    ACS Biomater Sci Eng; 2020 May; 6(5):2506-2517. PubMed ID: 33463268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comprehensive review on singlet oxygen generation in nanomaterials and conjugated polymers for photodynamic therapy in the treatment of cancer.
    Singh N; Sen Gupta R; Bose S
    Nanoscale; 2024 Feb; 16(7):3243-3268. PubMed ID: 38265094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a functionalized UV-emitting nanocomposite for the treatment of cancer using indirect photodynamic therapy.
    Sengar P; Juárez P; Verdugo-Meza A; Arellano DL; Jain A; Chauhan K; Hirata GA; Fournier PGJ
    J Nanobiotechnology; 2018 Feb; 16(1):19. PubMed ID: 29482561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioactivatable reactive oxygen species-sensitive nanoparticulate system for chemo-photodynamic therapy.
    Kim Y; Uthaman S; Pillarisetti S; Noh K; Huh KM; Park IK
    Acta Biomater; 2020 May; 108():273-284. PubMed ID: 32205212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photodynamic therapy: current status and future directions.
    Benov L
    Med Princ Pract; 2015; 24 Suppl 1(Suppl 1):14-28. PubMed ID: 24820409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual-Photosensitizer Nanoplatform Based on Near-Infrared Excitation Orthogonal Emission Nanomaterials for Enhanced Photodynamic Therapy of Tumors.
    Qiu Y; Guo X; Zhang C; Qin T; Liu F; Liu J
    ACS Appl Bio Mater; 2023 Jun; 6(6):2394-2403. PubMed ID: 37216601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Third-Generation Anticancer Photodynamic Therapy Systems Based on Star-like Anionic Polyacrylamide Polymer, Gold Nanoparticles, and Temoporfin Photosensitizer.
    Yeshchenko O; Khort P; Fedotov O; Chumachenko V; Virych P; Warren HS; Booth BW; Bliznyuk V; Kutsevol N
    Molecules; 2024 May; 29(10):. PubMed ID: 38792086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in drug discovery of phototherapeutic non-porphyrinic anticancer agents.
    Dichiara M; Prezzavento O; Marrazzo A; Pittalà V; Salerno L; Rescifina A; Amata E
    Eur J Med Chem; 2017 Dec; 142():459-485. PubMed ID: 28943196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibody-modified Gold Nanobiostructures: Advancing Targeted Photodynamic Therapy for Improved Cancer Treatment.
    Alavi N; Maghami P; Pakdel AF; Rezaei M; Avan A
    Curr Pharm Des; 2023; 29(39):3103-3122. PubMed ID: 37990429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Photodynamic therapy – significance in oncology].
    Mossakowska B; Fabisiewicz A; Siedlecki J
    Postepy Biochem; 2021 Sep; 67(3):236-247. PubMed ID: 34894388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of photosensitization processes for an improved targeted photodynamic therapy.
    Verhille M; Couleaud P; Vanderesse R; Brault D; Barberi-Heyob M; Frochot C
    Curr Med Chem; 2010; 17(32):3925-43. PubMed ID: 20858211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.