These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 39106059)

  • 41. Molecular dynamics simulating the effects of Shockley-type stacking faults on the radiation displacement cascades in 4H-SiC.
    Jiang S; Li Y; Zhang Y; Chen C; Chen Z; Zhu W; He H; Wang X
    RSC Adv; 2024 Aug; 14(38):27778-27788. PubMed ID: 39224629
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Creation of True Two-Dimensional Silicon Carbide.
    Chabi S; Guler Z; Brearley AJ; Benavidez AD; Luk TS
    Nanomaterials (Basel); 2021 Jul; 11(7):. PubMed ID: 34361184
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High Performance Pd/4H-SiC Epitaxial Schottky Barrier Radiation Detectors for Harsh Environment Applications.
    Mandal KC; Chaudhuri SK; Nag R
    Micromachines (Basel); 2023 Jul; 14(8):. PubMed ID: 37630068
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Wet-Oxidation-Assisted Chemical Mechanical Polishing and High-Temperature Thermal Annealing for Low-Loss 4H-SiC Integrated Photonic Devices.
    Shi X; Lu Y; Chaussende D; Rottwitt K; Ou H
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984202
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Temperature dependence of the thermo-optic coefficient in 4H-SiC and GaN slabs at the wavelength of 1550 nm.
    Rao S; Mallemace ED; Cocorullo G; Faggio G; Messina G; Della Corte FG
    Sci Rep; 2022 Mar; 12(1):4809. PubMed ID: 35314709
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Investigation of the Anisotropy of 4H-SiC Materials in Nanoindentation and Scratch Experiments.
    Shi S; Yu Y; Wang N; Zhang Y; Shi W; Liao X; Duan N
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407828
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Crystal structures and the electronic properties of silicon-rich silicon carbide materials by first principle calculations.
    Alkhaldi ND; Barman SK; Huda MN
    Heliyon; 2019 Nov; 5(11):e02908. PubMed ID: 31844763
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Strain engineering of core-shell silicon carbide nanowires for mechanical and piezoresistive characterizations.
    Nakata S; Uesugi A; Sugano K; Rossi F; Salviati G; Lugstein A; Isono Y
    Nanotechnology; 2019 Jun; 30(26):265702. PubMed ID: 30840948
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization of silicon dioxide films on a 4H-SiC Si(0001) face by fourier transform infrared (FT-IR) spectroscopy and cathodoluminescence spectroscopy.
    Yoshikawa M; Seki H; Inoue K; Matsuda K; Tanahashi Y; Sako H; Nanen Y; Kato M; Kimoto T
    Appl Spectrosc; 2011 May; 65(5):543-8. PubMed ID: 21513598
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A novel hydrogenated boron-carbon monolayer with high stability and promising carrier mobility.
    Fan D; Lu S; Chen C; Jiang M; Li X; Hu X
    Phys Chem Chem Phys; 2019 Jan; 21(5):2572-2577. PubMed ID: 30657490
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nonmonotonic strain dependence of lattice thermal conductivity in monolayer SiC: a first-principles study.
    Guo SD; Dong J; Liu JT
    Phys Chem Chem Phys; 2018 Aug; 20(34):22038-22046. PubMed ID: 30112534
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Strain-induced enhancement of thermoelectric performance of TiS
    Li G; Yao K; Gao G
    Nanotechnology; 2018 Jan; 29(1):015204. PubMed ID: 29125467
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High thermal conductivity in wafer-scale cubic silicon carbide crystals.
    Cheng Z; Liang J; Kawamura K; Zhou H; Asamura H; Uratani H; Tiwari J; Graham S; Ohno Y; Nagai Y; Feng T; Shigekawa N; Cahill DG
    Nat Commun; 2022 Nov; 13(1):7201. PubMed ID: 36418359
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High-Mobility Transport Anisotropy in Few-Layer MoO
    Zhang WB; Qu Q; Lai K
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1702-1709. PubMed ID: 27977924
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Valley-Engineering Mobilities in Two-Dimensional Materials.
    Sohier T; Gibertini M; Campi D; Pizzi G; Marzari N
    Nano Lett; 2019 Jun; 19(6):3723-3729. PubMed ID: 31083949
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Stress Characterization of the Interface Between Thermal Oxide and the 4H-SiC Epitaxial Layer Using Near-Field Optical Raman Microscopy.
    Yoshikawa M; Fujita Y; Murakami M
    Appl Spectrosc; 2019 Oct; 73(10):1193-1200. PubMed ID: 31219330
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Generating free charges by carrier multiplication in quantum dots for highly efficient photovoltaics.
    Ten Cate S; Sandeep CS; Liu Y; Law M; Kinge S; Houtepen AJ; Schins JM; Siebbeles LD
    Acc Chem Res; 2015 Feb; 48(2):174-81. PubMed ID: 25607377
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Systematic Characterization of Plasma-Etched Trenches on 4H-SiC Wafers.
    Pirnaci MD; Spitaleri L; Tenaglia D; Perricelli F; Fragalà ME; Bongiorno C; Gulino A
    ACS Omega; 2021 Aug; 6(31):20667-20675. PubMed ID: 34396012
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The Optimal Electronic Structure for High-Mobility 2D Semiconductors: Exceptionally High Hole Mobility in 2D Antimony.
    Cheng L; Zhang C; Liu Y
    J Am Chem Soc; 2019 Oct; 141(41):16296-16302. PubMed ID: 31550895
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phonon- and surface-roughness-limited mobility of gate-all-around 3C-SiC and Si nanowire FETs.
    Rogdakis K; Poli S; Bano E; Zekentes K; Pala MG
    Nanotechnology; 2009 Jul; 20(29):295202. PubMed ID: 19567960
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.