These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 39106130)

  • 1. Designing and Analyzing In-Place Motor Tasks in Virtual Reality With Goal Functions.
    Carrera RM; Tao C; Agrawal SK
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2928-2938. PubMed ID: 39106130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of virtual reality and task complexity on digital health metrics assessing upper limb function.
    Kanzler CM; Armand T; Simovic L; Sylvester R; Domnik N; Eilfort AM; Rohner C; Gassert R; Gonzenbach R; Lambercy O
    J Neuroeng Rehabil; 2024 Jul; 21(1):125. PubMed ID: 39068424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatigue, induced via repetitive upper-limb motor tasks, influences trunk and shoulder kinematics during an upper limb reaching task in a virtual reality environment.
    Dupuis F; Sole G; Wassinger C; Bielmann M; Bouyer LJ; Roy JS
    PLoS One; 2021; 16(4):e0249403. PubMed ID: 33831037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of object size and task goals on reaching kinematics in a non-immersive virtual environment.
    Chen Y; Armstrong C; Childers R; Do A; Thirey K; Xu J; Bryant DG; Howard A
    Hum Mov Sci; 2022 Jun; 83():102954. PubMed ID: 35472658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating the neural correlates of goal-oriented upper extremity movements.
    Nathan DE; Prost RW; Guastello SJ; Jeutter And DC; Reynolds NC
    NeuroRehabilitation; 2012; 31(4):421-8. PubMed ID: 23232166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of neuromuscular fatigue on task performance during repetitive goal-directed movements.
    Gates DH; Dingwell JB
    Exp Brain Res; 2008 Jun; 187(4):573-85. PubMed ID: 18327575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time modulation of visual feedback on human full-body movements in a virtual mirror: development and proof-of-concept.
    Roosink M; Robitaille N; McFadyen BJ; Hébert LJ; Jackson PL; Bouyer LJ; Mercier C
    J Neuroeng Rehabil; 2015 Jan; 12(1):2. PubMed ID: 25558785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of virtual reality-based balance training on motor learning and postural control in healthy adults: a randomized preliminary study.
    Prasertsakul T; Kaimuk P; Chinjenpradit W; Limroongreungrat W; Charoensuk W
    Biomed Eng Online; 2018 Sep; 17(1):124. PubMed ID: 30227884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of body visualization on performance in head-mounted display virtual reality.
    Pastel S; Chen CH; Petri K; Witte K
    PLoS One; 2020; 15(9):e0239226. PubMed ID: 32956420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Virtual Reality Upper Limb Rehabilitation Training on Older Adults.
    Gu X; Fan Z; Liu H; Bu L; Li P
    J Mot Behav; 2024; 56(4):393-406. PubMed ID: 38240295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A neural tracking and motor control approach to improve rehabilitation of upper limb movements.
    Goffredo M; Bernabucci I; Schmid M; Conforto S
    J Neuroeng Rehabil; 2008 Feb; 5():5. PubMed ID: 18251996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impaired posture, movement preparation, and execution during both paretic and nonparetic reaching following stroke.
    Yang CL; Creath RA; Magder L; Rogers MW; McCombe Waller S
    J Neurophysiol; 2019 Apr; 121(4):1465-1477. PubMed ID: 30785824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward Physiological Detection of a "Just-Right" Challenge Level for Motor Learning in Immersive Virtual Reality: Protocol for a Cross-Sectional Study.
    Lemay M; Levac DE
    JMIR Res Protoc; 2024 Sep; 13():e55730. PubMed ID: 39312763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of range-of-motion and variability in upper body movements between transradial prosthesis users and able-bodied controls when executing goal-oriented tasks.
    Major MJ; Stine RL; Heckathorne CW; Fatone S; Gard SA
    J Neuroeng Rehabil; 2014 Sep; 11():132. PubMed ID: 25192744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Allocation of attention and dual-task effects on upper and lower limb task performance in healthy young adults.
    McIsaac TL; Benjapalakorn B
    Exp Brain Res; 2015 Sep; 233(9):2607-17. PubMed ID: 26080755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical potential and neuroplastic effect of targeted virtual reality based intervention for distal upper limb in post-stroke rehabilitation: a pilot observational study.
    Nath D; Singh N; Saini M; Banduni O; Kumar N; Srivastava MVP; Mehndiratta A
    Disabil Rehabil; 2024 Jun; 46(12):2640-2649. PubMed ID: 37383015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Risk Lower-Extremity Biomechanics Evaluated in Simulated Soccer-Specific Virtual Environments.
    DiCesare CA; Kiefer AW; Bonnette S; Myer GD
    J Sport Rehabil; 2020 Mar; 29(3):294-300. PubMed ID: 30676190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Locomotor skill acquisition in virtual reality shows sustained transfer to the real world.
    Kim A; Schweighofer N; Finley JM
    J Neuroeng Rehabil; 2019 Sep; 16(1):113. PubMed ID: 31521167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Upper Extremity Kinematics Using Virtual Reality Movement Tasks and Wearable IMU Technology.
    Barclay SA; Klausing LN; Hill TM; Kinney AL; Reissman T; Reissman ME
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38203094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.