These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 39106270)

  • 1. Finite element modeling of stress distribution and safety factors in a Ti-27Nb alloy hip implant under real-world physiological loading scenarios.
    Amjad M; Badshah S; Ahmad S; Badshah M; Jan S; Yasir M; Akram W; Alam Shah I; Muhammad R; Khan MI; Yasmeen T
    PLoS One; 2024; 19(8):e0300270. PubMed ID: 39106270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro assessment of Function Graded (FG) artificial Hip joint stem in terms of bone/cement stresses: 3D Finite Element (FE) study.
    Al-Jassir FF; Fouad H; Alothman OY
    Biomed Eng Online; 2013 Jan; 12():5. PubMed ID: 23324627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corrosion-wear of β-Ti alloy TMZF (Ti-12Mo-6Zr-2Fe) in simulated body fluid.
    Yang X; Hutchinson CR
    Acta Biomater; 2016 Sep; 42():429-439. PubMed ID: 27397494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of porous orthopaedic implant material and structure on load sharing with simulated bone ingrowth: A finite element analysis comparing titanium and PEEK.
    Carpenter RD; Klosterhoff BS; Torstrick FB; Foley KT; Burkus JK; Lee CSD; Gall K; Guldberg RE; Safranski DL
    J Mech Behav Biomed Mater; 2018 Apr; 80():68-76. PubMed ID: 29414477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite element analysis of a low modulus Ti-20Zr-3Mo-3Sn alloy designed to reduce the stress shielding effect of a hip prosthesis.
    Jia T; Guines D; Gordin DM; Leotoing L; Gloriant T
    J Mech Behav Biomed Mater; 2024 Sep; 157():106640. PubMed ID: 38917558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modular titanium alloy neck adapter failures in hip replacement--failure mode analysis and influence of implant material.
    Grupp TM; Weik T; Bloemer W; Knaebel HP
    BMC Musculoskelet Disord; 2010 Jan; 11():3. PubMed ID: 20047653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-term survivorship of an exchangeable-neck hip prosthesis with a Ti-alloy/Ti-alloy neck-stem junction.
    Baleani M; Toni A; Ancarani C; Stea S; Bordini B
    Arch Orthop Trauma Surg; 2023 Jun; 143(6):3649-3657. PubMed ID: 36178493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element analysis of hip implant with varying in taper neck lengths under static loading conditions.
    Chethan KN; Shyamasunder Bhat N; Zuber M; Satish Shenoy B
    Comput Methods Programs Biomed; 2021 Sep; 208():106273. PubMed ID: 34284197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Why do some titanium-alloy total hip arthroplasty modular necks fail?
    Fokter SK; Moličnik A; Kavalar R; Pelicon P; Rudolf R; Gubeljak N
    J Mech Behav Biomed Mater; 2017 May; 69():107-114. PubMed ID: 28064103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In silico evaluation of lattice designs for additively manufactured total hip implants.
    Izri Z; Bijanzad A; Torabnia S; Lazoglu I
    Comput Biol Med; 2022 May; 144():105353. PubMed ID: 35245699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite element analysis of a hybrid corrugated hip implant for stability and loading during gait phases.
    Gupta V; Chanda A
    Biomed Phys Eng Express; 2022 Apr; 8(3):. PubMed ID: 35413697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design optimization of skeletal hip implant cross-sections using finite-element analysis.
    Beulah P; Sivarasu S; Mathew L
    J Long Term Eff Med Implants; 2009; 19(4):271-8. PubMed ID: 21083533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite element analysis on a medical implant.
    Semenescu A; Radu-Ioniță F; Mateș IM; Bădică P; Batalu ND; Negoita OD; Purcarea VL
    Rom J Ophthalmol; 2016; 60(2):116-119. PubMed ID: 29450333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A numerical model to reproduce squeaking of ceramic-on-ceramic total hip arthroplasty. Influence of design and material.
    Piriou P; Ouenzerfi G; Migaud H; Renault E; Massi F; Serrault M
    Orthop Traumatol Surg Res; 2016 Jun; 102(4 Suppl):S229-34. PubMed ID: 27033843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative study of two materials for dynamic hip screw during fall and gait loading: titanium alloy and stainless steel.
    Taheri NS; Blicblau AS; Singh M
    J Orthop Sci; 2011 Nov; 16(6):805-13. PubMed ID: 21877191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conus hip prosthesis.
    Wagner H; Wagner M
    Acta Chir Orthop Traumatol Cech; 2001; 68(4):213-21. PubMed ID: 11706545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite element analysis of a one-piece zirconia implant in anterior single tooth implant applications.
    Talmazov G; Veilleux N; Abdulmajeed A; Bencharit S
    PLoS One; 2020; 15(2):e0229360. PubMed ID: 32092128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fretting corrosion behaviour of Ti-6Al-4V reinforced with zirconia in foetal bovine serum.
    Semetse L; Obadele BA; Raganya L; Geringer J; Olubambi PA
    J Mech Behav Biomed Mater; 2019 Dec; 100():103392. PubMed ID: 31430704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of stress/strain in dental implants and abutments of alternative materials compared to conventional titanium alloy-3D non-linear finite element analysis.
    Tretto PHW; Dos Santos MBF; Spazzin AO; Pereira GKR; Bacchi A
    Comput Methods Biomech Biomed Engin; 2020 Jun; 23(8):372-383. PubMed ID: 32116034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of PEEK Coating on Hip Implant Stress Shielding: A Finite Element Analysis.
    Anguiano-Sanchez J; Martinez-Romero O; Siller HR; Diaz-Elizondo JA; Flores-Villalba E; Rodriguez CA
    Comput Math Methods Med; 2016; 2016():6183679. PubMed ID: 27051460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.