These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 39106796)
21. Reductive solidification/stabilization of chromate in municipal solid waste incineration fly ash by ascorbic acid and blast furnace slag. Zhou X; Zhou M; Wu X; Han Y; Geng J; Wang T; Wan S; Hou H Chemosphere; 2017 Sep; 182():76-84. PubMed ID: 28494363 [TBL] [Abstract][Full Text] [Related]
22. Leachability of heavy metals from lightweight aggregates made with sewage sludge and municipal solid waste incineration fly ash. Wei N Int J Environ Res Public Health; 2015 May; 12(5):4992-5005. PubMed ID: 25961800 [TBL] [Abstract][Full Text] [Related]
23. Research on oxygen enrichment for municipal solid waste fly ash melting: A pilot-scale study on natural gas and coal as the melting fuel. Zhang Y; Ma Z; Fang Z; Qian Y; Huang Z; Ye Y; Yan J J Environ Manage; 2024 Jan; 350():119459. PubMed ID: 38000269 [TBL] [Abstract][Full Text] [Related]
24. Co-disposal of municipal solid waste incineration fly ash and bottom slag: A novel method of low temperature melting treatment. Wong G; Gan M; Fan X; Ji Z; Chen X; Wang Z J Hazard Mater; 2021 Apr; 408():124438. PubMed ID: 33229258 [TBL] [Abstract][Full Text] [Related]
25. Effects of medical waste incineration fly ash on the promotion of heavy metal chlorination volatilization from incineration residues. Shen W; Zhu N; Xi Y; Huang J; Li F; Wu P; Dang Z J Hazard Mater; 2022 Mar; 425():128037. PubMed ID: 34906873 [TBL] [Abstract][Full Text] [Related]
26. Life cycle assessment for the production of MSWI fly-ash based porous glass-ceramics: Scenarios based on the contribution of silica sources, methane aided, and energy recoveries. Barracco F; Demichelis F; Sharifikolouei E; Ferraris M; Fino D; Tommasi T Waste Manag; 2023 Feb; 157():301-311. PubMed ID: 36584494 [TBL] [Abstract][Full Text] [Related]
27. Fluidization-melting characteristics of fly ash from municipal solid waste incineration. Zhou L; Yang G; Ren Q; Guo S; Lyu Q Waste Manag; 2024 Feb; 174():509-517. PubMed ID: 38128369 [TBL] [Abstract][Full Text] [Related]
28. Effect of additives on melting temperature and energy consumption of municipal solid waste incineration fly ash. Gao J; Dong C; Wang X; Zhu Y; Zhao Y; Lin Y; Hu X Waste Manag Res; 2021 Dec; 39(12):1451-1458. PubMed ID: 33499764 [TBL] [Abstract][Full Text] [Related]
29. Characterization of controlled low-strength material obtained from dewatered sludge and refuse incineration bottom ash: mechanical and microstructural perspectives. Zhen G; Lu X; Zhao Y; Niu J; Chai X; Su L; Li YY; Liu Y; Du J; Hojo T; Hu Y J Environ Manage; 2013 Nov; 129():183-9. PubMed ID: 23933484 [TBL] [Abstract][Full Text] [Related]
30. Heavy metal leaching and distribution in glass products from the co-melting treatment of electroplating sludge and MSWI fly ash. Yue Y; Zhang J; Sun F; Wu S; Pan Y; Zhou J; Qian G J Environ Manage; 2019 Feb; 232():226-235. PubMed ID: 30476684 [TBL] [Abstract][Full Text] [Related]
31. Co-vitrification of hazardous waste incineration fly ash and hazardous waste sludge based on CaO-SiO Long Y; Song Y; Yang Y; Huang H; Fang H; Shen D; Geng H; Ruan J; Gu F J Environ Manage; 2023 Jul; 338():117776. PubMed ID: 36965423 [TBL] [Abstract][Full Text] [Related]
32. Plasma vitrification and heavy metals solidification of MSW and sewage sludge incineration fly ash. Ma W; Shi W; Shi Y; Chen D; Liu B; Chu C; Li D; Li Y; Chen G J Hazard Mater; 2021 Apr; 408():124809. PubMed ID: 33383457 [TBL] [Abstract][Full Text] [Related]
33. Preparation of municipal solid waste incineration fly ash/ granite sawing mud ceramsite and the morphological transformation and migration properties of chlorine. Zhu Y; Shao Y; Tian C; Zhang W; Zhang T; Shao Y; Ma J Waste Manag; 2024 Jan; 173():1-9. PubMed ID: 37951037 [TBL] [Abstract][Full Text] [Related]
34. Recycling municipal solid waste incineration slag and fly ash as precursors in low-range alkaline cements. Cristelo N; Segadães L; Coelho J; Chaves B; Sousa NR; de Lurdes Lopes M Waste Manag; 2020 Mar; 104():60-73. PubMed ID: 31962218 [TBL] [Abstract][Full Text] [Related]
35. Thermal treatment and vitrification of boiler ash from a municipal solid waste incinerator. Yang Y; Xiao Y; Voncken JH; Wilson N J Hazard Mater; 2008 Jun; 154(1-3):871-9. PubMed ID: 18077086 [TBL] [Abstract][Full Text] [Related]
36. Converting ash into reusable slag at lower carbon footprint: Vitrification of incineration bottom ash in MSW-fueled demonstration-scale slagging gasifier. Heberlein S; Chan WP; Hupa L; Zhao Y; Lisak G J Environ Manage; 2024 Feb; 352():119967. PubMed ID: 38237332 [TBL] [Abstract][Full Text] [Related]
37. A study of the stabilization and solidification of heavy metals in co-vitrification of medical waste incineration ash and coal fly ash. Song H; Huang Y; Pang J; Li Z; Zhu Z; Cheng H; Gao J; Zuo W; Zhou H Waste Manag; 2024 Sep; 186():46-54. PubMed ID: 38852376 [TBL] [Abstract][Full Text] [Related]
38. Geochemical modeling and assessment of leaching from carbonated municipal solid waste incinerator (MSWI) fly ash. Wang L; Chen Q; Jamro IA; Li R; Li Y; Li S; Luan J Environ Sci Pollut Res Int; 2016 Jun; 23(12):12107-19. PubMed ID: 26965281 [TBL] [Abstract][Full Text] [Related]
39. Water washing effects on metals emission reduction during municipal solid waste incinerator (MSWI) fly ash melting process. Chiang KY; Hu YH Waste Manag; 2010 May; 30(5):831-8. PubMed ID: 20079621 [TBL] [Abstract][Full Text] [Related]
40. Characterisation of major component leaching and buffering capacity of RDF incineration and gasification bottom ash in relation to reuse or disposal scenarios. Rocca S; van Zomeren A; Costa G; Dijkstra JJ; Comans RN; Lombardi F Waste Manag; 2012 Apr; 32(4):759-68. PubMed ID: 22226920 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]