These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 39107296)

  • 1. A Euclidean transformer for fast and stable machine learned force fields.
    Frank JT; Unke OT; Müller KR; Chmiela S
    Nat Commun; 2024 Aug; 15(1):6539. PubMed ID: 39107296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving machine learning force fields for molecular dynamics simulations with fine-grained force metrics.
    Wang Z; Wu H; Sun L; He X; Liu Z; Shao B; Wang T; Liu TY
    J Chem Phys; 2023 Jul; 159(3):. PubMed ID: 37458355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The emergence of machine learning force fields in drug design.
    Chen M; Jiang X; Zhang L; Chen X; Wen Y; Gu Z; Li X; Zheng M
    Med Res Rev; 2024 May; 44(3):1147-1182. PubMed ID: 38173298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient interatomic descriptors for accurate machine learning force fields of extended molecules.
    Kabylda A; Vassilev-Galindo V; Chmiela S; Poltavsky I; Tkatchenko A
    Nat Commun; 2023 Jun; 14(1):3562. PubMed ID: 37322039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Set of Moment Tensor Potentials for Zirconium with Increasing Complexity.
    Luo Y; Meziere JA; Samolyuk GD; Hart GLW; Daymond MR; Béland LK
    J Chem Theory Comput; 2023 Oct; 19(19):6848-6856. PubMed ID: 37698988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning local equivariant representations for large-scale atomistic dynamics.
    Musaelian A; Batzner S; Johansson A; Sun L; Owen CJ; Kornbluth M; Kozinsky B
    Nat Commun; 2023 Feb; 14(1):579. PubMed ID: 36737620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving Machine Learned Force Fields for Complex Fluids through Enhanced Sampling: A Liquid Crystal Case Study.
    Jin Y; Perez-Lemus GR; Zubieta Rico PF; de Pablo JJ
    J Phys Chem A; 2024 Aug; 128(34):7257-7268. PubMed ID: 39150905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine-Learned Potentials by Active Learning from Organic Crystal Structure Prediction Landscapes.
    Butler PWV; Hafizi R; Day GM
    J Phys Chem A; 2024 Feb; 128(5):945-957. PubMed ID: 38277275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing geometric representations for molecules with equivariant vector-scalar interactive message passing.
    Wang Y; Wang T; Li S; He X; Li M; Wang Z; Zheng N; Shao B; Liu TY
    Nat Commun; 2024 Jan; 15(1):313. PubMed ID: 38182565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards exact molecular dynamics simulations with machine-learned force fields.
    Chmiela S; Sauceda HE; Müller KR; Tkatchenko A
    Nat Commun; 2018 Sep; 9(1):3887. PubMed ID: 30250077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics and quantum mechanics of RNA: conformational and chemical change we can believe in.
    Ditzler MA; Otyepka M; Sponer J; Walter NG
    Acc Chem Res; 2010 Jan; 43(1):40-7. PubMed ID: 19754142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tensor improve equivariant graph neural network for molecular dynamics prediction.
    Jiang C; Zhang Y; Liu Y; Peng J
    Comput Biol Chem; 2024 Jun; 110():108053. PubMed ID: 38520884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ab initio machine learning of phase space averages.
    Weinreich J; Lemm D; von Rudorff GF; von Lilienfeld OA
    J Chem Phys; 2022 Jul; 157(2):024303. PubMed ID: 35840379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SpaiNN: equivariant message passing for excited-state nonadiabatic molecular dynamics.
    Mausenberger S; Müller C; Tkatchenko A; Marquetand P; González L; Westermayr J
    Chem Sci; 2024 Sep; 15(38):15880-90. PubMed ID: 39282652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomistic Polarizable Embeddings: Energy, Dynamics, Spectroscopy, and Reactivity.
    Loco D; Lagardère L; Adjoua O; Piquemal JP
    Acc Chem Res; 2021 Jul; 54(13):2812-2822. PubMed ID: 33961401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A data-guided approach for the evaluation of zeolites for hydrogen storage with the aid of molecular simulations.
    Manda T; Barasa GO; Louis H; Irfan A; Agumba JO; Lugasi SO; Pembere AMS
    J Mol Model; 2024 Jan; 30(2):43. PubMed ID: 38236500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting Molecular Energy Using Force-Field Optimized Geometries and Atomic Vector Representations Learned from an Improved Deep Tensor Neural Network.
    Lu J; Wang C; Zhang Y
    J Chem Theory Comput; 2019 Jul; 15(7):4113-4121. PubMed ID: 31142110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning of accurate energy-conserving molecular force fields.
    Chmiela S; Tkatchenko A; Sauceda HE; Poltavsky I; Schütt KT; Müller KR
    Sci Adv; 2017 May; 3(5):e1603015. PubMed ID: 28508076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.