These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Wafer-Scale and Cost-Effective Manufacturing of Controllable Nanogap Arrays for Highly Sensitive SERS Sensing. Zhao Q; Yang H; Nie B; Luo Y; Shao J; Li G ACS Appl Mater Interfaces; 2022 Jan; 14(2):3580-3590. PubMed ID: 34983178 [TBL] [Abstract][Full Text] [Related]
6. Carbon Electrode-Molecule Junctions: A Reliable Platform for Molecular Electronics. Jia C; Ma B; Xin N; Guo X Acc Chem Res; 2015 Sep; 48(9):2565-75. PubMed ID: 26190024 [TBL] [Abstract][Full Text] [Related]
7. Wet chemical synthesis of soluble gold nanogaps. Jain T; Tang Q; Bjørnholm T; Nørgaard K Acc Chem Res; 2014 Jan; 47(1):2-11. PubMed ID: 23944385 [TBL] [Abstract][Full Text] [Related]
8. Single-crystalline nanogap electrodes: enhancing the nanowire-breakdown process with a gaseous environment. Suga H; Sumiya T; Furuta S; Ueki R; Miyazawa Y; Nishijima T; Fujita J; Tsukagoshi K; Shimizu T; Naitoh Y ACS Appl Mater Interfaces; 2012 Oct; 4(10):5542-6. PubMed ID: 23054205 [TBL] [Abstract][Full Text] [Related]
9. Edge-Trimmed Nanogaps in 2D Materials for Robust, Scalable, and Tunable Lateral Tunnel Junctions. Nguyen HT; Nguyen Y; Su YH; Hsieh YP; Hofmann M Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33920302 [TBL] [Abstract][Full Text] [Related]
10. Issues of nanoelectronics: a possible roadmap. Wang KL J Nanosci Nanotechnol; 2002; 2(3-4):235-66. PubMed ID: 12908252 [TBL] [Abstract][Full Text] [Related]
11. Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Scheibel T; Parthasarathy R; Sawicki G; Lin XM; Jaeger H; Lindquist SL Proc Natl Acad Sci U S A; 2003 Apr; 100(8):4527-32. PubMed ID: 12672964 [TBL] [Abstract][Full Text] [Related]
12. Nano approach investigation of the conduction mechanism in polyaniline nanofibers. Lin YF; Chen CH; Xie WJ; Yang SH; Hsu CS; Lin MT; Jian WB ACS Nano; 2011 Feb; 5(2):1541-8. PubMed ID: 21280617 [TBL] [Abstract][Full Text] [Related]
13. Silicon based nanogap device for studying electrical transport phenomena in molecule-nanoparticle hybrids. Strobel S; Hernández RM; Hansen AG; Tornow M J Phys Condens Matter; 2008 Sep; 20(37):374126. PubMed ID: 21694433 [TBL] [Abstract][Full Text] [Related]
14. Vertical single nanowire devices based on conducting polymers. Vlad A; Dutu CA; Jedrasik P; Södervall U; Gohy JF; Melinte S Nanotechnology; 2012 Jan; 23(2):025302. PubMed ID: 22166685 [TBL] [Abstract][Full Text] [Related]
15. Wafer-scale fabrication of high-quality tunable gold nanogap arrays for surface-enhanced Raman scattering. Le-The H; Lozeman JJA; Lafuente M; Muñoz P; Bomer JG; Duy-Tong H; Berenschot E; van den Berg A; Tas NR; Odijk M; Eijkel JCT Nanoscale; 2019 Jul; 11(25):12152-12160. PubMed ID: 31194202 [TBL] [Abstract][Full Text] [Related]
16. Nanoelectronics from the bottom up. Lu W; Lieber CM Nat Mater; 2007 Nov; 6(11):841-50. PubMed ID: 17972939 [TBL] [Abstract][Full Text] [Related]
17. Fully Bottom-Up Waste-Free Growth of Ultrathin Silicon Wafer via Self-Releasing Seed Layer. Hong JE; Lee Y; Mo SI; Jeong HS; An JH; Song HE; Oh J; Bang J; Oh JH; Kim KH Adv Mater; 2021 Oct; 33(41):e2103708. PubMed ID: 34476855 [TBL] [Abstract][Full Text] [Related]
19. Recent advances in large-scale assembly of semiconducting inorganic nanowires and nanofibers for electronics, sensors and photovoltaics. Long YZ; Yu M; Sun B; Gu CZ; Fan Z Chem Soc Rev; 2012 Jun; 41(12):4560-80. PubMed ID: 22573265 [TBL] [Abstract][Full Text] [Related]
20. Wafer scale fabrication of highly dense and uniform array of sub-5 nm nanogaps for surface enhanced Raman scatting substrates. Cai H; Wu Y; Dai Y; Pan N; Tian Y; Luo Y; Wang X Opt Express; 2016 Sep; 24(18):20808-15. PubMed ID: 27607684 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]