These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 39107711)
1. Nitrogen starvation leads to TOR kinase-mediated downregulation of fatty acid synthesis in the algae Chlorella sorokiniana and Chlamydomonas reinhardtii. Vijayan J; Alvarez S; Naldrett MJ; Morse W; Maliva A; Wase N; Riekhof WR BMC Plant Biol; 2024 Aug; 24(1):753. PubMed ID: 39107711 [TBL] [Abstract][Full Text] [Related]
2. Target of rapamycin (TOR) plays a critical role in triacylglycerol accumulation in microalgae. Imamura S; Kawase Y; Kobayashi I; Sone T; Era A; Miyagishima SY; Shimojima M; Ohta H; Tanaka K Plant Mol Biol; 2015 Oct; 89(3):309-18. PubMed ID: 26350402 [TBL] [Abstract][Full Text] [Related]
3. TOR (target of rapamycin) is a key regulator of triacylglycerol accumulation in microalgae. Imamura S; Kawase Y; Kobayashi I; Shimojima M; Ohta H; Tanaka K Plant Signal Behav; 2016; 11(3):e1149285. PubMed ID: 26855321 [TBL] [Abstract][Full Text] [Related]
4. Investigating the effect of target of rapamycin kinase inhibition on the Chlamydomonas reinhardtii phosphoproteome: from known homologs to new targets. Werth EG; McConnell EW; Couso Lianez I; Perrine Z; Crespo JL; Umen JG; Hicks LM New Phytol; 2019 Jan; 221(1):247-260. PubMed ID: 30040123 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of TOR in Ford MM; Smythers AL; McConnell EW; Lowery SC; Kolling DRJ; Hicks LM Cells; 2019 Sep; 8(10):. PubMed ID: 31569396 [TBL] [Abstract][Full Text] [Related]
6. Target of Rapamycin Inhibition in Mubeen U; Jüppner J; Alpers J; Hincha DK; Giavalisco P Plant Cell; 2018 Oct; 30(10):2240-2254. PubMed ID: 30228127 [TBL] [Abstract][Full Text] [Related]
7. Nitrogen starvation-induced accumulation of triacylglycerol in the green algae: evidence for a role for ROC40, a transcription factor involved in circadian rhythm. Goncalves EC; Koh J; Zhu N; Yoo MJ; Chen S; Matsuo T; Johnson JV; Rathinasabapathi B Plant J; 2016 Mar; 85(6):743-57. PubMed ID: 26920093 [TBL] [Abstract][Full Text] [Related]
8. The target of rapamycin kinase affects biomass accumulation and cell cycle progression by altering carbon/nitrogen balance in synchronized Chlamydomonas reinhardtii cells. Jüppner J; Mubeen U; Leisse A; Caldana C; Wiszniewski A; Steinhauser D; Giavalisco P Plant J; 2018 Jan; 93(2):355-376. PubMed ID: 29172247 [TBL] [Abstract][Full Text] [Related]
9. Enhancement of extraplastidic oil synthesis in Chlamydomonas reinhardtii using a type-2 diacylglycerol acyltransferase with a phosphorus starvation-inducible promoter. Iwai M; Ikeda K; Shimojima M; Ohta H Plant Biotechnol J; 2014 Aug; 12(6):808-19. PubMed ID: 24909748 [TBL] [Abstract][Full Text] [Related]
10. Lipid droplet synthesis is limited by acetate availability in starchless mutant of Chlamydomonas reinhardtii. Ramanan R; Kim BH; Cho DH; Ko SR; Oh HM; Kim HS FEBS Lett; 2013 Feb; 587(4):370-7. PubMed ID: 23313852 [TBL] [Abstract][Full Text] [Related]
11. Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Msanne J; Xu D; Konda AR; Casas-Mollano JA; Awada T; Cahoon EB; Cerutti H Phytochemistry; 2012 Mar; 75():50-9. PubMed ID: 22226037 [TBL] [Abstract][Full Text] [Related]
12. Isolation and characterization of a mutant defective in triacylglycerol accumulation in nitrogen-starved Chlamydomonas reinhardtii. Hung CH; Kanehara K; Nakamura Y Biochim Biophys Acta; 2016 Sep; 1861(9 Pt B):1282-1293. PubMed ID: 27060488 [TBL] [Abstract][Full Text] [Related]
13. ROS-mediated thylakoid membrane remodeling and triacylglycerol biosynthesis under nitrogen starvation in the alga Vijayan J; Wase N; Liu K; Morse W; Zhang C; Riekhof WR Front Plant Sci; 2024; 15():1418049. PubMed ID: 39040507 [TBL] [Abstract][Full Text] [Related]
14. Downregulation of a putative plastid PDC E1α subunit impairs photosynthetic activity and triacylglycerol accumulation in nitrogen-starved photoautotrophic Chlamydomonas reinhardtii. Shtaida N; Khozin-Goldberg I; Solovchenko A; Chekanov K; Didi-Cohen S; Leu S; Cohen Z; Boussiba S J Exp Bot; 2014 Dec; 65(22):6563-76. PubMed ID: 25210079 [TBL] [Abstract][Full Text] [Related]
15. Elevated CO2 improves lipid accumulation by increasing carbon metabolism in Chlorella sorokiniana. Sun Z; Chen YF; Du J Plant Biotechnol J; 2016 Feb; 14(2):557-66. PubMed ID: 25973988 [TBL] [Abstract][Full Text] [Related]
16. Functional analysis of three type-2 DGAT homologue genes for triacylglycerol production in the green microalga Chlamydomonas reinhardtii. La Russa M; Bogen C; Uhmeyer A; Doebbe A; Filippone E; Kruse O; Mussgnug JH J Biotechnol; 2012 Nov; 162(1):13-20. PubMed ID: 22542934 [TBL] [Abstract][Full Text] [Related]
17. Lipid remodeling regulator 1 (LRL1) is differently involved in the phosphorus-depletion response from PSR1 in Chlamydomonas reinhardtii. Hidayati NA; Yamada-Oshima Y; Iwai M; Yamano T; Kajikawa M; Sakurai N; Suda K; Sesoko K; Hori K; Obayashi T; Shimojima M; Fukuzawa H; Ohta H Plant J; 2019 Nov; 100(3):610-626. PubMed ID: 31350858 [TBL] [Abstract][Full Text] [Related]
18. TOR inhibition interrupts the metabolic homeostasis by shifting the carbon-nitrogen balance in Mubeen U; Giavalisco P; Caldana C Plant Signal Behav; 2019; 14(11):1670595. PubMed ID: 31583958 [TBL] [Abstract][Full Text] [Related]
19. Combined intracellular nitrate and NIT2 effects on storage carbohydrate metabolism in Chlamydomonas. Remacle C; Eppe G; Coosemans N; Fernandez E; Vigeolas H J Exp Bot; 2014 Jan; 65(1):23-33. PubMed ID: 24187418 [TBL] [Abstract][Full Text] [Related]
20. BiP links TOR signaling to ER stress in Chlamydomonas. Crespo JL Plant Signal Behav; 2012 Feb; 7(2):273-5. PubMed ID: 22353876 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]