These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 39108833)
1. Energy Analysis and Heat Integration in the Joint Process of Biomass Fast Pyrolysis and In Line Sorption Enhanced Steam Reforming. Comendador P; Santamaria L; Amutio M; Alvarez J; Olazar M; Lopez G Energy Fuels; 2024 Aug; 38(15):14402-14413. PubMed ID: 39108833 [TBL] [Abstract][Full Text] [Related]
2. Multifunctional Pd/Ni-Co catalyst for hydrogen production by chemical looping coupled with steam reforming of acetic acid. Fermoso J; Gil MV; Rubiera F; Chen D ChemSusChem; 2014 Nov; 7(11):3063-77. PubMed ID: 25209388 [TBL] [Abstract][Full Text] [Related]
3. Alkali Metal CO Memon MZ; Zhao X; Sikarwar VS; Vuppaladadiyam AK; Milne SJ; Brown AP; Li J; Zhao M Environ Sci Technol; 2017 Jan; 51(1):12-27. PubMed ID: 27997129 [TBL] [Abstract][Full Text] [Related]
4. Hydrogen Production by Sorption Enhanced Steam Reforming (SESR) of Biomass in a Fluidised-Bed Reactor Using Combined Multifunctional Particles. Clough PT; Boot-Handford ME; Zheng L; Zhang Z; Fennell PS Materials (Basel); 2018 May; 11(5):. PubMed ID: 29883427 [TBL] [Abstract][Full Text] [Related]
5. Hydrogen production from glucose and sorbitol by sorption-enhanced steam reforming: challenges and promises. He L; Chen D ChemSusChem; 2012 Mar; 5(3):587-95. PubMed ID: 22378630 [TBL] [Abstract][Full Text] [Related]
6. Biomass Source Influence on Hydrogen Production through Pyrolysis and in Line Oxidative Steam Reforming. Garcia I; Lopez G; Santamaria L; Fernandez E; Bilbao J; Olazar M; Artetxe M; Amutio M ChemSusChem; 2024 Oct; 17(20):e202400325. PubMed ID: 38742482 [TBL] [Abstract][Full Text] [Related]
7. Advancing hydrogen generation: Kinetic insights and process refinement for sorption-enhanced steam gasification of biomass utilizing waste carbide slag. Zou L; Guo S; Wang Y; Shao H; Wu A; Zhao Q J Environ Manage; 2024 Aug; 366():121717. PubMed ID: 38981274 [TBL] [Abstract][Full Text] [Related]
8. Appraisal of agroforestry biomass wastes for hydrogen production by an integrated process of fast pyrolysis and in line steam reforming. Arregi A; Santamaria L; Lopez G; Olazar M; Bilbao J; Artetxe M; Amutio M J Environ Manage; 2023 Dec; 347():119071. PubMed ID: 37801944 [TBL] [Abstract][Full Text] [Related]
9. Progress on Catalyst Development for the Steam Reforming of Biomass and Waste Plastics Pyrolysis Volatiles: A Review. Santamaria L; Lopez G; Fernandez E; Cortazar M; Arregi A; Olazar M; Bilbao J Energy Fuels; 2021 Nov; 35(21):17051-17084. PubMed ID: 34764542 [TBL] [Abstract][Full Text] [Related]
10. Sewage sludge pyrolysis coupled with self-supplied steam reforming for high quality syngas production and the influence of initial moisture content. Mei Z; Chen D; Zhang J; Yin L; Huang Z; Xin Q Waste Manag; 2020 Apr; 106():77-87. PubMed ID: 32199229 [TBL] [Abstract][Full Text] [Related]
11. Energy and economic analysis of alternatives for the valorization of hydrogen rich stream produced in the aqueous phase reforming of pyrolysis bio-oil aqueous fraction. Heras F; Justicia J; Baeza JA; Gilarranz MA; Ferro VR Bioresour Technol; 2024 May; 399():130572. PubMed ID: 38492651 [TBL] [Abstract][Full Text] [Related]
12. Integrated CO Papalas T; Antzaras AN; Lemonidou AA Energy Fuels; 2024 Jul; 38(13):11966-11979. PubMed ID: 38984063 [TBL] [Abstract][Full Text] [Related]
13. Utilization of acetone-butanol-ethanol-water mixture obtained from biomass fermentation as renewable feedstock for hydrogen production via steam reforming: Thermodynamic and energy analyses. Kumar B; Kumar S; Sinha S; Kumar S Bioresour Technol; 2018 Aug; 261():385-393. PubMed ID: 29684868 [TBL] [Abstract][Full Text] [Related]
14. Catalytic gasification of biomass (Miscanthus) enhanced by CO Zamboni I; Debal M; Matt M; Girods P; Kiennemann A; Rogaume Y; Courson C Environ Sci Pollut Res Int; 2016 Nov; 23(22):22253-22266. PubMed ID: 26996917 [TBL] [Abstract][Full Text] [Related]
15. Integration of steam gasification and catalytic reforming of lignocellulosic biomass as a strategy to improve syngas quality and pollutants removal. Quiroga E; Cifuentes B; Moltó J; Ortuño N; Conesa J; Davó-Quiñonero A; Cobo M Waste Manag; 2022 Jun; 147():48-59. PubMed ID: 35623261 [TBL] [Abstract][Full Text] [Related]
16. Production of H Shi K; Yan J; Menéndez JA; Luo X; Yang G; Chen Y; Lester E; Wu T Front Chem; 2020; 8():3. PubMed ID: 32039161 [TBL] [Abstract][Full Text] [Related]
17. Ceramic microreactors for on-site hydrogen production from high temperature steam reforming of propane. Christian MM; Kenis PJ Lab Chip; 2006 Oct; 6(10):1328-37. PubMed ID: 17111577 [TBL] [Abstract][Full Text] [Related]
18. Thermodynamic modelling and optimization of oxy-reforming and oxy-steam reforming of biogas by RSM. Özcan MD; Özcan O; Akın AN Environ Technol; 2020 Jan; 41(1):14-28. PubMed ID: 31264942 [TBL] [Abstract][Full Text] [Related]
19. Utilization of CO2 and biomass char derived from pyrolysis of Dunaliella salina: the effects of steam and catalyst on CO and H2 gas production. Yang C; Jia L; Su S; Tian Z; Song Q; Fang W; Chen C; Liu G Bioresour Technol; 2012 Apr; 110():676-81. PubMed ID: 22336747 [TBL] [Abstract][Full Text] [Related]
20. Thermal plasma gasification of organic waste stream coupled with CO Sikarwar VS; Peela NR; Vuppaladadiyam AK; Ferreira NL; Mašláni A; Tomar R; Pohořelý M; Meers E; Jeremiáš M RSC Adv; 2022 Feb; 12(10):6122-6132. PubMed ID: 35424582 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]