These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 39108833)

  • 21. Can Steam- and CO-Rich Streams Be Produced Sequentially in the Isothermal Chemical Looping Super-Dry Reforming Scheme?
    Wang X; Wei J; Zhang J
    ACS Omega; 2020 Mar; 5(10):5401-5406. PubMed ID: 32201830
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High purity H2 by sorption-enhanced chemical looping reforming of waste cooking oil in a packed bed reactor.
    Pimenidou P; Rickett G; Dupont V; Twigg MV
    Bioresour Technol; 2010 Dec; 101(23):9279-86. PubMed ID: 20655199
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Torrefaction/carbonization-enhanced gasification-steam reforming of biomass for promoting hydrogen-enriched syngas production and tar elimination over gasification biochars.
    Kong G; Wang K; Zhang X; Li J; Han L; Zhang X
    Bioresour Technol; 2022 Nov; 363():127960. PubMed ID: 36113820
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alkaline thermal treatment of seaweed for high-purity hydrogen production with carbon capture and storage potential.
    Zhang K; Kim WJ; Park AA
    Nat Commun; 2020 Jul; 11(1):3783. PubMed ID: 32728021
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of the Effect of CaO on Hydrogen Production by Sorption-Enhanced Steam Methane Reforming.
    Luo Y; Chen J; Wang T
    ACS Omega; 2024 Feb; 9(5):5330-5337. PubMed ID: 38343961
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Process Optimization of Wood Particles Microwave Pyrolysis with Combined Production of Bio-Oil and Syngas.
    Wu S; Chen B; Song Y; Wang X; Zhang B; Zhao L; Qiao K
    J Oleo Sci; 2020 Jun; 69(6):649-657. PubMed ID: 32378554
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two-stage steam gasification of waste biomass in fluidized bed at low temperature: parametric investigations and performance optimization.
    Xiao X; Meng X; Le DD; Takarada T
    Bioresour Technol; 2011 Jan; 102(2):1975-81. PubMed ID: 20889337
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Practical achievements on biomass steam gasification in a rotary tubular coiled-downdraft reactor.
    Andrew R; Gokak DT; Sharma P; Gupta S
    Waste Manag Res; 2016 Dec; 34(12):1268-1274. PubMed ID: 27495911
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Evaluation of Reactive Sorption Enhanced Biogas Steam Reforming Process for Hydrogen Production Using Nano-Sized CaO Adsorbents.
    Liu H; Yang Z; Wu S
    J Nanosci Nanotechnol; 2019 Jun; 19(6):3244-3251. PubMed ID: 30744750
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Approaching sustainable H2 production: sorption enhanced steam reforming of ethanol.
    He L; Berntsen H; Chen D
    J Phys Chem A; 2010 Mar; 114(11):3834-44. PubMed ID: 19831373
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improving hydrogen-rich gas production from biomass catalytic steam gasification over metal-doping porous biochar.
    Kong G; Liu Q; Ji G; Jia H; Cao T; Zhang X; Han L
    Bioresour Technol; 2023 Nov; 387():129662. PubMed ID: 37573983
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Steam reforming of crude glycerol with in situ CO(2) sorption.
    Dou B; Rickett GL; Dupont V; Williams PT; Chen H; Ding Y; Ghadiri M
    Bioresour Technol; 2010 Apr; 101(7):2436-42. PubMed ID: 19945865
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Process design and simulation of H2-rich gases production from biomass pyrolysis process.
    Li C; Suzuki K
    Bioresour Technol; 2010 Jan; 101 Suppl 1():S86-90. PubMed ID: 19523817
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gas reforming and tar decomposition performance of nickel oxide (NiO)/SBA-15 catalyst in gasification of woody biomass.
    Inoue N; Tada T; Kawamoto K
    J Air Waste Manag Assoc; 2019 Apr; 69(4):502-512. PubMed ID: 30540545
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Producing hydrogen by catalytic steam reforming of methanol using non-noble metal catalysts.
    Deng Y; Li S; Appels L; Dewil R; Zhang H; Baeyens J; Mikulcic H
    J Environ Manage; 2022 Nov; 321():116019. PubMed ID: 36029634
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Review of the CFD Modeling of Hydrogen Production in Catalytic Steam Reforming Reactors.
    Ghasem N
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555702
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Linking pyrolysis and anaerobic digestion (Py-AD) for the conversion of lignocellulosic biomass.
    Fabbri D; Torri C
    Curr Opin Biotechnol; 2016 Apr; 38():167-73. PubMed ID: 26948108
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An integrated process for hydrogen-rich gas production from cotton stalks: The simultaneous gasification of pyrolysis gases and char in an entrained flow bed reactor.
    Chen Z; Zhang S; Chen Z; Ding D
    Bioresour Technol; 2015 Dec; 198():586-92. PubMed ID: 26433156
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fe-rich biomass derived char for microwave-assisted methane reforming with carbon dioxide.
    Li L; Yan K; Chen J; Feng T; Wang F; Wang J; Song Z; Ma C
    Sci Total Environ; 2019 Mar; 657():1357-1367. PubMed ID: 30677902
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Factorial design analysis of parameters for the sorption-enhanced steam reforming of ethanol in a circulating fluidized bed riser using CFD.
    Phuakpunk K; Chalermsinsuwan B; Putivisutisak S; Assabumrungrat S
    RSC Adv; 2018 Jul; 8(43):24209-24230. PubMed ID: 35539199
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.