These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 39109295)

  • 1. Oxidative fluorination with Selectfluor: A convenient procedure for preparing hypervalent iodine(V) fluorides.
    Dearman SMG; Li X; Li Y; Singh K; Stuart AM
    Beilstein J Org Chem; 2024; 20():1785-1793. PubMed ID: 39109295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Halogen Bonding in Hypervalent Iodine Compounds.
    Catalano L; Cavallo G; Metrangolo P; Resnati G; Terraneo G
    Top Curr Chem; 2016; 373():289-309. PubMed ID: 26809623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Fluorination/Aryl Migration/Cyclization Cascade for the Metal-Free Synthesis of Fluoro-Benzoxazepines.
    Ulmer A; Brunner C; Arnold AM; Pöthig A; Gulder T
    Chemistry; 2016 Mar; 22(11):3660-4. PubMed ID: 26641801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypervalent Iodine(III)-Catalyzed Balz-Schiemann Fluorination under Mild Conditions.
    Xing B; Ni C; Hu J
    Angew Chem Int Ed Engl; 2018 Jul; 57(31):9896-9900. PubMed ID: 29932480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypervalent Iodine-Catalyzed Fluorination of Diene-Containing Compounds: A Computational Study.
    Liu T; Li HB
    Molecules; 2024 Jun; 29(13):. PubMed ID: 38999056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Difluorination of Functionalized Aromatic Olefins Using Hypervalent Iodine/HF Reagents.
    Kitamura T; Yoshida K; Mizuno S; Miyake A; Oyamada J
    J Org Chem; 2018 Dec; 83(24):14853-14860. PubMed ID: 30336031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Halogen bonding in hypervalent iodine and bromine derivatives: halonium salts.
    Cavallo G; Murray JS; Politzer P; Pilati T; Ursini M; Resnati G
    IUCrJ; 2017 Jul; 4(Pt 4):411-419. PubMed ID: 28875028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Straightforward syntheses of hypervalent iodine(III) reagents mediated by Selectfluor.
    Ye C; Twamley B; Shreeve JM
    Org Lett; 2005 Sep; 7(18):3961-4. PubMed ID: 16119942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical Generation of Hypervalent Bromine(III) Compounds.
    Sokolovs I; Mohebbati N; Francke R; Suna E
    Angew Chem Int Ed Engl; 2021 Jul; 60(29):15832-15837. PubMed ID: 33894098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kitamura Electrophilic Fluorination Using HF as a Source of Fluorine.
    Han J; Butler G; Moriwaki H; Konno H; Soloshonok VA; Kitamura T
    Molecules; 2020 Apr; 25(9):. PubMed ID: 32366048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of fluorinated polycyclic dehydroaltenusin analogs through hypervalent iodine-catalyzed dearomatization.
    Cao J; Deng Q; Hu L; Zhang X; Xiong Y
    Org Biomol Chem; 2022 Oct; 20(41):8104-8107. PubMed ID: 36205569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expanding the Scope of Hypervalent Iodine Reagents for Perfluoroalkylation: From Trifluoromethyl to Functionalized Perfluoroethyl.
    Matoušek V; Václavík J; Hájek P; Charpentier J; Blastik ZE; Pietrasiak E; Budinská A; Togni A; Beier P
    Chemistry; 2016 Jan; 22(1):417-24. PubMed ID: 26592210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting bond dissociation energies of cyclic hypervalent halogen reagents using DFT calculations and graph attention network model.
    Shao Y; Ren Z; Han Z; Chen L; Li Y; Xue XS
    Beilstein J Org Chem; 2024; 20():1444-1452. PubMed ID: 38952960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct cyanation of heteroaromatic compounds mediated by hypervalent iodine(III) reagents: In situ generation of PhI(III)-CN species and their cyano transfer.
    Dohi T; Morimoto K; Takenaga N; Goto A; Maruyama A; Kiyono Y; Tohma H; Kita Y
    J Org Chem; 2007 Jan; 72(1):109-16. PubMed ID: 17194088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypervalent Iodine Reagents by Anodic Oxidation: A Powerful Green Synthesis.
    Elsherbini M; Wirth T
    Chemistry; 2018 Sep; 24(51):13399-13407. PubMed ID: 29655209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactivity of hydroxy- and aquo(hydroxy)-λ3-iodane-crown ether complexes.
    Miyamoto K; Yokota Y; Suefuji T; Yamaguchi K; Ozawa T; Ochiai M
    Chemistry; 2014 Apr; 20(18):5447-53. PubMed ID: 24644216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iodanyl Radical Catalysis.
    Maity A; Frey BL; Powers DC
    Acc Chem Res; 2023 Jul; 56(14):2026-2036. PubMed ID: 37409761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophilic fluorination using a hypervalent iodine reagent derived from fluoride.
    Geary GC; Hope EG; Singh K; Stuart AM
    Chem Commun (Camb); 2013 Oct; 49(81):9263-5. PubMed ID: 23998186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous-Flow Electrochemical Generator of Hypervalent Iodine Reagents: Synthetic Applications.
    Elsherbini M; Winterson B; Alharbi H; Folgueiras-Amador AA; Génot C; Wirth T
    Angew Chem Int Ed Engl; 2019 Jul; 58(29):9811-9815. PubMed ID: 31050149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypervalent Fluoro-iodane-Triggered Semipinacol Rearrangements: Synthesis of α-Fluoro Ketones.
    Zhao P; Wang W; Gulder T
    Org Lett; 2023 Sep; 25(35):6560-6565. PubMed ID: 37615672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.